

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 1 of 61

History and Some Good Words

Python is a powerful programming language ideal for scripting and rapid application development. It is used

in web development (like: Django and Bottle), scientific and mathematical computing (Orange, SymPy, NumPy)

to desktop graphical user Interfaces (Pygame, Panda3D).

“Python’s killer features – simple syntax that makes its code easy to learn and share, and its huge array of

third-party packages – make it a good general purpose language. Its versatility is shown by its users and uses.

The Central Intelligence Agency has employed it for hacking, Pixar for producing films, Google for crawling web

pages and Spotify for recommending songs.”

Out of top 50 programming language Python stands with C, C++ and Java. These four tops the list.

History of Python

Python is a fairly old language created by Guido Van Rossum. The design began in the late 1980s and was first

released in February 1991.

In late 1980s, Guido Van Rossum was working on the Amoeba distributed operating system group. He wanted

to use an interpreted language like ABC (ABC has simple easy-to-understand syntax) that could access the

Amoeba system calls. So, he decided to create a language that was extensible. This led to design of a new

language which was later named Python.

Why the name Python?

No. It wasn't named after a dangerous snake. Rossum was fan of a comedy series from late seventies. The

name "Python" was adopted from the same series "Monty Python's Flying Circus".

Release Dates of Popular Versions

Version Release Date

Python 1.0 (first standard release) January 1994

Python 2.0 (Introduc+ed list comprehensions) October 16, 2000

Python 3.0 (Emphasis on removing duplicative constructs and modules December 3, 2008

Features of Python

• Free and open-source

• Great Community Support

• Simple and Easier to Learn

• Simple Elegant Syntax

• Object-oriented Programming Language

• Huge Library Support to ease your work

• Portability :

 You can move Python programs from one platform to another, and run it without any changes.

• Extensible and Embeddable:

 Suppose an application requires high performance. You can easily combine pieces of C/C++ or other

 languages with Python code.

• A High-Level, Interpreted Language:

 Unlike C/C++, you don't have to worry about daunting tasks like memory management, garbage

 collection and so on.

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 2 of 61

Introduction to Python

Reserve Keywords (33) in Python 3.7 (Latest Version)

All the keywords except True, False and None are in lowercase.

Other Important Keywords and Function which have their special meaning in programming

abs all any chr dict dir eval exit file float

format input int max min next object open print quit

range round set str sum tuple type vars zip

Identifier

An identifier is a name given to entities like class, functions, variables, etc.

• The first character must be a letter or underscore (_).

• Additional characters may be alphanumeric or underscore.

• Names are case-sensitive.

• Identifier can be of any length.

Special Identifiers

Python also provides some special identifiers that use underscores. Their name will be of the form:

_xxx

__xxx__

__xxx

Comments

anything followed by hash (#) is comment

How to Create and run a Python Program?

1. Create a new .py file (e.g. myprogram.py) using any text editor that will contain the Python program (source

code).

2. To run the code in command line

 >>> python myprogram.py

 or

 >>> python3 myprogram.py

 or

 >>> python2 myprogram.py

depending upon version to version

and as assert break class continue def del

elif else except False finally for from global

if import in is lambda not None nonlocal

or pass raise return True with try while

yield

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 3 of 61

Data Types in Python

• Numbers

• Strings

• Set

• List

• Tuple

• Dictionary

Import

import math or

import library or

import user_defiend_module.py etc are used same as header files in C.

Definitions inside a module can be imported to another module or the interactive interpreter in Python.

We use the import keyword to do this.

Arithmetic operators

Operator Meaning Example

+
Addition x + y

unary plus +5

-
Subtraction x - y

unary minus -7

* Multiply two operands x * y

/ Divide left operand by the right one (always results into float) x / y

% Modulus - remainder of the division of left operand by the right x % y (remainder of x/y)

// Floor division - division that results into whole number adjusted to the left in the number line x // y

** Exponent - left operand raised to the power of right x**y (x to the power y)

Example Script: arith.py

x = 10

y = 3

#x + y = 13

print('x + y =',x+y)

#x - y = 7

print('x - y =',x-y)

#x * y = 30

print('x * y =',x*y)

#x / y = 3.3333333333333335

print('x / y =',x/y)

#x // y = 3

print('x // y =',x//y)

#x ** y = 1000

print('x ** y =',x**y)

Comparison Operators in Python Operator

> x>y

< x<y

== x==y

!= x!=y

>= x>=y

<= x<=y

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 4 of 61

Example Script: comp.py
x = 5

y = 7

x > y is False

print('x > y is',x>y)

x < y is True

print('x < y is',x<y)

x == y is False

print('x == y is',x==y)

x != y is True

print('x != y is',x!=y)

x >= y is False

print('x >= y is',x>=y)

x <= y is True

print('x <= y is',x<=y)

Some Important Interactive Commands
dir()
dir(__builtins__)

help()

len() #returns length of the parameter

type()

str()

Examples to be run in terminal:

Popular Operations on Data-types

Example Script: number.py
a=int(10)

b=10

c=float(10)

d=10.0

e=3+2j

print(a,type(a),'\n',b,type(b))

print(c,type(c),'\n',d,type(d),'\n',e,type(e))

Functions on Strings

Example Script: strFun.py
a=" Hello, How, are, you? "

#removes leading and trailing white spaces

print(a.strip())

#removes trailing white space

print(a.rstrip())

#removes leading white space

print(a.lstrip())

#converts string to lower case

print(a.lower())

#converts string to upper case

print(a.upper())

#Search and Replace

print(a.replace("H",'X'))

#splits string into list

print(a.split())

#find the existing text and returns position or 2(in Python 2)

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 5 of 61

print(a.find('are'))

#return -1 for non existing text

print(a.find('You'))

#length of the string

print(len(a))

Bitwise Operator (Same as C)

--

& Bitwise AND | Bitwise OR ^ Bitwise XOR

>> Right Shift << left Shift ~ 1’s Compliment

Example Script: bitWise.py
l=0&3

m=1<<10

n=32>>2

o=~5

p=6|2

q=6^6

print("----- Bit Wise Operations ------")

print("AND",l)

print("LS",m)

print("RS",n)

print("1's Compliment",o)

print("OR",p)

print("XOR",q)

Logical Comparison with 'is' and 'is not' ; Logical Search with 'in' and 'not in'

Example Script: logicalStr.py
o="hello"

p="hello"

#comparing strings logically

print(o is p)

print(o is not p)

#logical searching a member in list

mylist=["hllo", "how"]

print("how" in mylist, "preltex" not in mylist)

#logical searching a member in Tuple

mytuple=("Hey", "preltex")

print("preltex" in mytuple, "Hey" not in mytuple)

#logical searching a member in Dictionary (key only)

mydict={"M":"Monday", 'J':"January"}

print("M" in mydict, "January" in mydict)

print("Monday" in mydict, "J" in mydict)

Operations on List

Example Script myList.py
#creating a new list

k=list(("tea","coffee","lemon","old"))

print(k)

append a new member at last

k.append("new")

print(k)

removes a member

k.remove("old")

print(k)

#reverse the list

k.reverse()

print(k)

#creating a new list

kkk=list(("breakfst","lunch","dinner","new"))

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 6 of 61

#extending the list k with kkk

k.extend(kkk)

print(k)

#couting a particular member or string

print(k.count("new"))

#printing the index of first match

print(k.index("new"))

#insert the member at specified index

k.insert(1,"more")

print(k)

#pop-out a member at specified index

k.pop(5)

print(k)

#sorting the list

k.sort()

print(k)

#copy the list

kk=k.copy()

print(kk)

#clear the list, does not destroy only removes all members

k.clear()

print(k)

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 7 of 61

Operations on set
Set in Python is a data structure equivalent to sets in mathematics. Any immutable data type can be an element of a

set: a number, a string, a tuple. Mutable (changeable) data types cannot be elements of the set.

Example Script : mySet.py
#creating a set

myset={"seb","kela","amrood"}

#alternate way to create a new set

s=set(("seb","kela","amrood"))

print(myset)

print(s)

#checking existance of a member in set

print("seb" in myset)

#comparing two indentical sets

print(myset is s)

#adding a new member

s.add("anar")

print(s)

#removing an existing member

s.remove("kela")

print(s)

#copying the set

newset=myset.copy();

print(newset)

#comparing two identical sets when copied

print(myset is newset)

#length of the set

print(len(s))

Exercise: try to use operations of list with set and find-out which one are compatible and which one are not.

Simple Operations on Dictionary

Example Script: dicOp.py
#Dictionary Operation

#creating a dictionary

dic={

 "India" :"New Delhi",

 "Haryana": "Chandigrah"

}

print(dic)

#printing a value using key

print(dic["India"])

#Alternate way to create a dictionary

di=dict(A="a",B="b",C="c")

print(di)

#adding a member to dictionary dic[key]=value

di["D"]="d"

print(di)

#deleting a member from dictionary using key

del(di["B"])

print(di)

#pop operation will delete the member based on key and returns its value

print(di.pop("C"))

#length of the dictionary

print(len(di))

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 8 of 61

Operations on Tuple

Example Script: myTuple.py
Creating an empty tuple

myTuple = ()

print(myTuple)

#initializing

myTuple = (1, 2, 3)

print(myTuple)

tuple with mixed datatypes

myTuple = (1, "Hello", 3.4)

print(myTuple)

nested tuple

myTuple = ("mouse", [8, 4, 6], (1, 2, 3))

print(myTuple)

tuple can be created without parentheses known as tuple packing

myTuple = 3, 4.6, "dog"

print(myTuple)

assigning values to variables from tuple, also known as tuple unpacking

a, b, c = myTuple

print(a)

print(b)

print(c)

#accessing the member

print(myTuple[0])

print(myTuple[2])

See Result

myNewTuple = ("hello")

print(type(myNewTuple))

Correct Result needs a comma at the end

myNewTuple = ("hello",)

print(type(myNewTuple))

parentheses is optional

myNewTuple = "hello",

print(type(myNewTuple))

Accessing elements using Index

Example Script newTuple.py
myTuple = ('p','r','e','l','t','e','x')

indexed from 1st to 3rd

#it always goes n-1th location

print(myTuple[1:4])

up to element -3 (not included)

print(myTuple[:-3])

from 4th to end

print(myTuple[4:])

printing all elements: beginning to end

print(myTuple[:])

Exercise : try to use the similar operations on Strings and List etc

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 9 of 61

More Operations

Some More Operations with List and Tuple

Example Script moreOp.py
#creating an integer list

myList=list((1,2,3,4))

#enumirating a list/tuple

enumList=enumerate(myList)

print(list(enumList))

#maths

print(sum(myList))

print(max(myList))

print(min(myList))

#Retuns true if all elements are True or list/tuple is empty

print(all(myList))

#Retuns true if any of the elements list/tuple are True;

print(any(myList))

#modify the list

myList.append(0)

#check now

print(all(myList))

#Clear the List

myList.clear()

#check now

print(all(myList))

#Return False if list/tuple is empty

print(any(myList))

Exercise: Try these operations with Tuple also

Some More Operations with Strings

Example Script moreOp2.py
center(), ljust() and rjust()

a = "PreltexSolutions"

Prints the string after centering with '.'

print (a.center(30,'.'))

Printing the string after ljust()

print (a.ljust(30,'-'))

Printing the string after rjust()

print (a.rjust(30,'+'))

Operations like isalpha, isdigit, isnumeric, isspace

Example Script isOp.py
a=['a','b','c','7',' ',"456"] #last one is space

#checks if the character is alphabet: a-z or A-Z

print(a[0].isalpha())

#checks if the character/string is numeric

print(a[5].isnumeric())

#checks if digit

print(a[3].isdigit())

#checks if alpha-Numeric a-z A-Z 0-9

print(a[1].isalnum())

#checks if it is a white space

print(a[4].isspace())

Exercise: Try these operations with strings and tuple also

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 10 of 61

Format Strings

%d int

%f float/real

%s String

%c character

%% to print % symbol

Example Script: formatOp.py
x = 220/7

y = 456

z = "Hello How are you?"

w='a'

#float Values

print("Value of X: %f"%x)

print("Value of X: %0.2f"%x)

print("Value of X: %5.2f"%x)

#notice

print("Value of Y: %d"%x)

print("Value of Y: %5d"%x)

#int values

print("Value of Y: %d"%y)

print("Value of Y: %5d"%y)

#String

print("Value of Y: %s"%z)

print("Value of Y: %50s"%z)

#Character

print("Value of Y: %c"%w)

print("Value of Y: %5c"%w)

Syntax of print()
print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

sep= separator, by default it is one white space

end= end of line, by default it is new line

Example Script: printOp.py
#use spe and end in print

#int object

a=10

#float object

b=20.3

#char object

c='a'

#string object

d="Hello"

#list object

e=list((1,2,3))

#tuple object

f=tuple((1,2,3))

#dictionary object

g=dict(a=1,b=2,c=3)

#default printing

print(a,b,c,d,e,f,g)

#printing with separator

print(a,b,c,d,e,f,g,sep='-')

#printing with separator and end character
print(a,b,c,d,e,f,g,sep=';',end='@')

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 11 of 61

List vs Tuple vs Dictionary vs Sets

All four are data structure in Python and it is always difficult to make a choice. Yet choosing the right data
structure for our data is essential. Let's try:

Lists vs Tuples
Tuples are used to collect an immutable ordered list of elements. This means that:

• You can’t add elements to a tuple. There’s no append() or extend() method for tuples,
• You can’t remove elements from a tuple. Tuples have no remove() or pop() method,
• You can find elements in a tuple since this doesn’t change the tuple.
• You can also use the in operator to check if an element exists in the tuple.

So, if you’re defining a constant set of values, use a tuple instead of a list. It will be faster than working with
lists and also safer. The tuples contain “write-protect” data.

Example Script: ListVsTuple.py
#list vs tuple

#creating a list

a=[1,2,3]

#creating a tuple

b=('a','b','c')

#printing

print(a,type(a))

print(b,type(b))

#modifying list

a[2]=5

print(a)

#try to modify tuple; first run above code and then uncomment last two line and run

#b[2]='x'

#print(b)

Lists vs Dictionaries

• A list store an ordered collection of items, so it keeps some order. Dictionaries don’t have any order.
• Dictionaries are known to associate each key with a value, while lists just contain values.
• Use a dictionary when you have an unordered set of unique keys that map to values.

Note that, because you have keys and values that link to each other, the performance will be better than lists
in cases where you’re checking membership of an element.

Lists vs Sets

• Just like dictionaries, sets have no order in their collection of items. Not like lists.
• Set requires the items contained in it to be hashable, lists store non-hashable items.
• Sets require your items to be unique and immutable.
• Duplicates are not allowed in sets, while lists allow for duplicates and are mutable.
• You should make use of sets when you have an unordered set of unique, immutable values that are

hashable.

Hashable:
in Python all immutable built-in objects are hashable
Non-Hashable:

in Python all mutable built-in objects are non-hashable

Hashable Floats Integers Tuples Strings frozenset()

Non-Hashable Lists Sets Dictionaries

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 12 of 61

Python append() vs extend() Methods

extend() method takes an iterable (list, set, tuple or string, all objects which have sequential indexes

starting from zero), and adds each element of the iterable to the list one at a time.

append() method, on the other hand, adds its argument to the end of the list as a single item, which means

that when the append() function takes an iterable as its argument, it will treat it as a single object.

Example Script : ExtenExpan.py
#creating a list

a=[1,2,3,]

#making a copy

b=a.copy()

#printing lists

print(a)

print(b)

#append and extend methods

a.append([4,5])

b.extend([4,5])

#printing changed lists

print(a)

print(b)

#creating new list

c=[8,9,10]

#alternatively append and extend lists

a.append(c)

b.extend(c)

#printing changed lists

print(a)

print(b)

frozenset() Method

Frozen set is just an immutable version of a Python set object. While elements of a set can be modified at

any time, elements of frozen set remains the same after creation. Due to this, frozen sets can be used as key

in Dictionary or as element of another set. But like sets, it is not ordered (the elements can be set at any

index).

Syntax:

frozenset(iterable) where: iterable is an object, like list, set, tuple etc.

Example Script:frorzSet.py
#creating a list

mylist = ['a', 'b', 'c']

print(mylist)

#extending a list when not frozen

mylist.extend(['d','e'])

#print new list

print(mylist)

#creating a frozen lsit

freezMyList = frozenset(mylist)

print(freezMyList)

#now uncomment following line and try to run

#freezMyList.extend(['f'])

print(freezMyList)

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 13 of 61

Methods of copying or clone in Python

• You can slice your original list and store it into a new variable: newList = oldList[:]
• You can use the built-in list() function: newList = list(oldList)
• Using copy library:

➢ With the copy() method: newList = copy.copy(oldList)

➢ If your list contains objects and you want to copy those as well, you can use copy.deepcopy(): copy.deepcopy(oldList)

Example Script: CopyCopy.py
#various methods of copy

a=[1,2,3]

#slice original list into new

b=a[:]

print(a)

print(b)

#using list function

c=list(a)

print(c)

#using copy library (import copy)

import copy

d=copy.copy(a)

print(d)

#alternatively

import copy as z

y=z.copy(a)

print(y)

#using copy.deepcopy(oldList) when list contains objects

x=[1,2,3,[4,5],['a','b'],"hello"]

e=copy.deepcopy(x)

print(e)

Spliting A Python List Into evenly sized Chunks

• we can resort to the zip() function in combination with iter()
• iter() is an iterator over a sequence (like i in for loop).
• ([iter(myList)] * N) produces a list with N listiterator objects: each list iterator is an iterator of myList.

• the * that is passed to the zip() function before anything else unpacks the sequence into arguments
so that you’re passing the same iterator three times to the zip() function, and it pulls an item from
the iterator each time.

How it works Lets take N=3 and x=[1,2,3,4,5,6,7,8,9]:

1. You will have three list iterator objects, which you can think of as:
 [1,2,3,4,5,6,7,8,9], [1,2,3,4,5,6,7,8,9], [1,2,3,4,5,6,7,8,9]

2. The first time, zip() will take one element of the list sequentially, which leaves you with:
 [1][2][3]

3. next time:
 [1, 4], [2, 5], [3, 6]

4. and then:
 [1, 4, 7], [2, 5, 8], [3, 6, 9]

5. finally all three are zipped and form like:
 [1, 2, 3], [4, 5, 6], [7, 8, 9]

Example Script: splitList.py
Creating a List

myList = [1,2,3,4,5,6,7,8,9,10,11,12]

print(myList)

Split into chunk of N elements zip(*[iter(myList)]*N)

newList = zip(*[iter(myList)]*3)

Use `list()` to print the result of `zip()`

print(list(newList))

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 14 of 61

Formatted Output using argument Positions and use of format method

Example Script: formatOut1.py

#similar to shell script $1 $2 etc
firstName = input("Enter First Name > ")

lastName = input("Enter Last Name > ")

Orgnization = input("Enter Organization Name > ")

print('{0}, {1} works at {2}'.format(firstName, lastName, Orgnization))

print('{1}, {0} works at {2}'.format(firstName, lastName, Orgnization))

print('FirstName {0}, LastName {1} works at {2}'.format(firstName, lastName, Orgnization))

print('{0}, {1} {0}, {1} works at {2}'.format(firstName, lastName, Orgnization))

Accessing Output strings arguments by name
Example Script: formatOut2.py
#Accessing Output strings arguments by name

name = input("Enter Name > ")

marks = input("Enter marks > ")

print('{x} got {p}% Marks'.format(x=name.title(), p=marks))

Number Format

Display Number in various Int format

Example Script: formatNum.py
Taking Input

number = int(input("Enter number > "))

'd' is for integer number formatting

print("The number is:{:d}".format(number))

'o' is for octal number formatting, binary and hexadecimal format

print('Output number in octal format : {0:o}'.format(number))

'b' is for binary number formatting

print('Output number in binary format: {0:b}'.format(number))

'x' is for hexadecimal format

print('Output number in hexadecimal format: {0:x}'.format(number))

'X' is for hexadecimal format in Capital Letters

print('Output number in HEXADECIMAL: {0:X}'.format(number))

Display Number in various Real/float format

Example Script: formatFloat.py
Taking Input

number = float(input("Enter float Number > "))

#'f' is for float number arguments

print("Output Number in The float type :{:f}".format(number))

padding for float numbers

print('padding for output float number{:5.2f}'.format(number))

#'e' is for Exponent notation

print('Output Exponent notation{:e}'.format(number))

#'E' is for Exponent notation in UPPER CASE

print('Output Exponent notation{:E}'.format(number))

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 15 of 61

Example Script: moreOnDict.py

#important operation on Dictionary

#creating a dictionary

d={'M':'Monday','T':'Tuesday','W':'Wednesday','Th':'Thrusday','F':'Friday','Sa':'Saturday'

,'Su':'Sunday'}

#creating a list of keys

k=d.keys()

#creating a list of values

v=d.values()

#Printing

print(d)

print(k)

print(v)

#lookup a key , with default value (if key is not found)

print(d.get('T','Not a Day'))

print(d.get('X','Not a Day'))

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 16 of 61

Decision Making

Any block in Python starts with a colon :

Note: Indentation/spacing is very important in Python, equal spacing makes statements in same block

if Block
if test: # note the colon ':'.
 statement1 # The statements following the
 statement2 #if are indented and executed
 statement3 # if the test is True.

if-else block Block
if test: # note the colon ':'.
 DoThis() # DoThis() ... if test=True
else: # note the colon after 'else'
 DoThat() # DoThat() ... if test=False

if-elif-else Block
If test:
 do this
elif another-test:
 otherwise do this
else:
 do that

Note: that the indentation/spacing of the if and its corresponding elif and else keywords must all be the same.

Example Script: ifelif.py
#if-elif-else

x=float(input("Enver First Number > "))

y=float(input("Enver Second Number > "))

if x > y :

 print(x," is greather than ", y)

elif x < y :

 print(x," is less than ",y)

else:

 print(x," is equal to ",y)

Different Types of Test we can do:

Comparisons

• var1 > var2 # greater than

• var1 >= var2 # greater than equal to

• var1 < var2 # Less than

• var1 <= var2 # less than equal to

• var1 == var2 # equal to

• var1 != var2 # not equal to

Sequence (list, tuple, or dictionary) membership

• var in sequence

• var not in sequence

Sequence length

• len(x)>0 # sequence has entries?

Has a value?

• var # not None (or zero or '')

Boolean value

• myObject # myObject ==True?

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 17 of 61

• not myObject # myObject ==False?

• var1 and var2 #logical AND

• var1 or var2 #logical OR

Validation

• var.isalpha()

• var.isalnum()

• var.isnumeric()

• var.isdigit()

• var.isdecimal()

• var.isspace()

• var.isprintable()

• var.isupper()

• var.islower()

• var.istitle()

• var.isidentifier()

Calculations

• (price*quantity) > 100.0 # cost>100?

• (cost-budget) > limit-budget # overbudget?

Example Script:ifis.py
#if and use of isxxxx() test

var=input("Enter any character > ")

if var.isalnum():

 print(var," is either alphabet or Number")

if var.isalpha():

 print(var," is an alphabet")

if var.isdigit():

 print(var," is a digit")

if var.isnumeric():

 print(var," is a Number")

if var.isdecimal():

 print(var," is a Decimal Number")

if var.isspace():

 print(var," is a White Space")

if var.isprintable():

 print(var," is a Printable Character")

if var.isupper():

 print(var," is an Upper Case")

if var.islower():

 print(var," is a Lower Case")

if var.istitle():

 print(var," is a Title Case")

#this is used to check if the identifier with valid name exist or not

#in this example this is always true as we are testing for var

if var.isidentifier():

 print(var," is a an identifier")

Exercise: Re-Write above program such that it employs nested if, if-else and ie-elif-else block

Exercise: Write a program to check if given number is positive, negative or zero, and if it is positive then

check further weather it is even or odd.

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 18 of 61

Example Script for Logical Operations: logical.py
x=10

y=20

z=0

#logical AND

print ("Logical AND".center(50,'-'))

if x and y:

 print("True")

else:

 print("False")

if y and z:

 print("True")

else:

 print("False")

#logical OR

print ("Logical OR".center(50,'-'))

if x or y:

 print("True")

else:

 print("False")

if y or z:

 print("True")

else:

 print("False")

#logical not

print ("Logical NOT".center(50,'-'))

if not x:

 print("True")

else:

 print("False")

if not y:

 print("True")

else:

 print("False")

if not z:

 print("True")

else:

 print("False")

#logical check for non-zero

print ("Check if Valueis Non-Zero".center(50,'-'))

if x:

 print("True")

else:

 print("False")

if x:

 print("True")

else:

 print("False")

if z:

 print("True")

else:

 print("False")

Example Script for Search in String: findStr.py
myStr=input("Enter a Line > ")

findStr=input("Enter a Search Word > ")

if len(myStr)>0 and len(findStr)>0:

 if findStr in myStr:

 print(findStr," is availabe in ", myStr)

 if findStr not in myStr:

 print(findStr," is notavailabe in ", myStr)

else:

 print("Error: Either the String or the Search word or both are empty")

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 19 of 61

Taking multiple inputs

Using split() method; Syntax:
 input().split(separator, maxsplit) #default separator is white space

Example Script: multiple_input.py
taking four inputs at a time

#try using different objects, numbers, strings, list, tuple, dictionary etc

w, x, y, z = input("Enter four values: ").split()

print("First Value: ", w)

print("Second Value: ", x)

print("Third Value: ", y)

print("Fourth Value: ", z)

Example Script: multi_inp_sep.py
taking four inputs separated by comma at a time

w, x, y, z = input("Enter four values : ").split(',')

print("First Value: ", w)

print("Second Value: ", x)

print("Third Value: ", y)

print("Fourth Value: ", z)

Example Script: multi_in_format.py
multiple input and format method

a, b = input("Enter two values: ").split()

print("First number is {}".format(a))

print("Second number is {}".format(b))

print("First number is {} and second number is {}".format(a, b))

USING LIST COMPREHENSION

See how multiple inputs are taken using list:

Example Script: multi_inp_list.py
taking multiple inputs using list and split them

w,x,y,z = [int(i) for i in input("Enter four values: ").split()]

print("First Value: ", w)

print("Second Value: ", x)

print("Third Value: ", y)

print("Fourth Value: ", z)

Example Script: multi_inp_list_split.py
taking multiple inputs using list and split them using semicolon

w,x,y,z = [int(i) for i in input("Enter Four values separated by \';\' : ").split(';')]

print("First Value: ", w)

print("Second Value: ", x)

print("Third Value: ", y)

print("Fourth Value: ", z)

Example Script: multi_inp_list_format.py
taking multiple inputs using list and format method

a, b = [int(i) for i in input("Enter two values: ").split()]

print("First number is {}".format(a))

print("Second number is {}".format(b))

print("First number is {} and second number is {}".format(a, b))

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 20 of 61

Mathematical functions : import math

import math
This module is always available. It provides access to the mathematical functions defined by the C standard. These functions cannot
be used with complex numbers; use the functions of the same name from the cmath module if you require support for complex
numbers

Number-theoretic and representation functions
math.ceil(x) : Return the ceiling of x, the smallest integer greater than or equal to x. If x is not a float, delegates to x.__ceil__(), which
should return an Integral value.

math.copysign(x, y) : Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed zeros,
copysign(1.0, -0.0) returns -1.0.

math.fabs(x) : Return the absolute value of x, where x is real/float.

math.factorial(x) : Return x factorial. Raises ValueError if x is not integral or is negative.

math.floor(x): Return the floor of x, the largest integer less than or equal to x. If x is not a float, delegates to x.__floor__(), which should
return an Integral value.

math.fmod(x, y) : Return fmod(x, y), as defined by the platform C library. Note that the Python expression x % y may not return the
same result.

math.frexp(x) : Return the mantissa and exponent of x as the pair (m, e). m is a float and e is an integer such that x == m * 2**e
exactly. If x is zero, returns (0.0, 0), otherwise 0.5 <= abs(m) < 1. This is used to “pick apart” the internal representation of a float in a
portable way.

math.fsum(iterable)
Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple intermediate partial sums,
for better understanding run following script
import math

#taking 0.1 10 times in a list

a=[0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1]

#normal sum

print(sum(a))

#using fsum

print(math.fsum(a))

math.gcd(a, b)
Return the greatest common divisor of the integers a and b. If either a or b is nonzero, then the value of gcd(a, b) is the largest positive
integer that divides both a and b. gcd(0, 0) returns 0.

math.isfinite(x) : Return True if x is neither an infinity nor a NaN, and False otherwise. (Note that 0.0 is considered finite.)

math.isinf(x) : Return True if x is a positive or negative infinity, and False otherwise.

math.isnan(x) : Return True if x is a NaN (not a number), and False otherwise.

math.ldexp(x, i) : Return x * (2**i). This is essentially the inverse of function frexp().

math.modf(x) : Return the fractional and integer parts of x. Both results carry the sign of x and are floats.

math.remainder(x, y)
For finite x and finite nonzero y, this is the difference x - n*y, where n is the closest integer to the exact value of the quotient x / y. If x
/ y is exactly halfway between two consecutive integers, the nearest even integer is used for n. The remainder r = remainder(x, y) thus
always satisfies abs(r) <= 0.5 * abs(y).

math.trunc(x)
Return the Real value x truncated to an Integral (usually an integer). Delegates to x.__trunc__().

Note that frexp() and modf() have a different call/return pattern than their C equivalents: they take a single argument and return a pair
of values, rather than returning their second return value through an ‘output parameter’ (there is no such thing in Python).

For the ceil(), floor(), and modf() functions, note that all floating-point numbers of sufficiently large magnitude are exact integers.
Python floats typically carry no more than 53 bits of precision (the same as the platform C double type), in which case any float x with
abs(x) >= 2**52 necessarily has no fractional bits.

https://docs.python.org/3/library/cmath.html#module-cmath
https://docs.python.org/3/library/numbers.html#numbers.Integral
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/numbers.html#numbers.Integral
https://docs.python.org/3/library/math.html#math.frexp
https://docs.python.org/3/library/numbers.html#numbers.Real
https://docs.python.org/3/library/numbers.html#numbers.Integral
https://docs.python.org/3/reference/datamodel.html#object.__trunc__
https://docs.python.org/3/library/math.html#math.frexp
https://docs.python.org/3/library/math.html#math.modf
https://docs.python.org/3/library/math.html#math.ceil
https://docs.python.org/3/library/math.html#math.floor
https://docs.python.org/3/library/math.html#math.modf

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 21 of 61

Power and logarithmic functions
math.exp(x)
Return e raised to the power x, where e = 2.718281… is the base of natural logarithms. This is usually more accurate than math.e ** x
or pow(math.e, x).

math.expm1(x)
Return e raised to the power x, minus 1. Here e is the base of natural logarithms. For small floats x, the subtraction in exp(x) - 1 can
result in a significant loss of precision; the expm1() function provides a way to compute this quantity to full precision: Try following
code

import math

#using exp function

print(math.exp(1e-2)-1)

#using expm1 function; see the diff in output

print(math.expm1(1e-2))

math.log(x[, base]) : With one argument, return the natural logarithm of x (to base e). With two arguments, return the logarithm of
x to the given base, calculated as log(x)/log(base).
math.log1p(x) : Return the natural logarithm of 1+x (base e). The result is calculated in a way which is accurate for x near zero.
math.log2(x) : Return the base-2 logarithm of x. This is usually more accurate than log(x, 2).
math.log10(x) : Return the base-10 logarithm of x. This is usually more accurate than log(x, 10).
math.pow(x, y) : Return x raised to the power y. Exceptional cases follow Annex ‘F’ of the C99 standard as far as possible. In particular,
pow(1.0, x) and pow(x, 0.0) always return 1.0, even when x is a zero or a NaN. If both x and y are finite, x is negative, and y is not an
integer then pow(x, y) is undefined, and raises ValueError.

Unlike the built-in ** operator, math.pow() converts both its arguments to type float. Use ** or the built-in pow() function for
computing exact integer powers.

math.sqrt(x) : Return the square root of x.

Trigonometric functions
math.acos(x) : Return the arc cosine of x, in radians.
math.asin(x) : Return the arc sine of x, in radians.
math.atan(x) : Return the arc tangent of x, in radians.
math.atan2(y, x) : Return atan(y / x), in radians. The result is between -pi and pi. The vector in the plane from the origin to point (x, y)
makes this angle with the positive X axis. The point of atan2() is that the signs of both inputs are known to it, so it can compute the
correct quadrant for the angle. For example, atan(1) and atan2(1, 1) are both pi/4, but atan2(-1, -1) is -3*pi/4.
math.cos(x) : Return the cosine of x radians.
math.hypot(x, y) : Return the Euclidean norm, sqrt(x*x + y*y). This is the length of the vector from the origin to point (x, y).
math.sin(x) : Return the sine of x radians.
math.tan(x) : Return the tangent of x radians.

Angular conversion
math.degrees(x): Convert angle x from radians to degrees.
math.radians(x) :Convert angle x from degrees to radians.

Hyperbolic functions
Hyperbolic functions are analogs of trigonometric functions that are based on hyperbolas instead of circles.
math.acosh(x) : Return the inverse hyperbolic cosine of x.
math.asinh(x): Return the inverse hyperbolic sine of x.
math.atanh(x): Return the inverse hyperbolic tangent of x.
math.cosh(x): Return the hyperbolic cosine of x.
math.sinh(x): Return the hyperbolic sine of x.
math.tanh(x): Return the hyperbolic tangent of x.

Special functions
math.erf(x) : Return the error function at x. The erf() function can be used to compute traditional statistical functions such as the
cumulative standard normal distribution:
math.erfc(x) : Return the complementary error function at x. The complementary error function is defined as 1.0 - erf(x). It is used for
large values of x where a subtraction from one would cause a loss of significance.
math.gamma(x) : Return the Gamma function at x.
math.lgamma(x): Return the natural logarithm of the absolute value of the Gamma function at x.

Constants
math.pi : The mathematical constant π = 3.141592…, to available precision.
math.e : The mathematical constant e = 2.718281…, to available precision.

https://en.wikipedia.org/wiki/Loss_of_significance
https://docs.python.org/3/library/math.html#math.expm1
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/math.html#math.pow
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#pow
https://docs.python.org/3/library/math.html#math.atan2
https://en.wikipedia.org/wiki/Hyperbolic_function
https://en.wikipedia.org/wiki/Error_function
https://docs.python.org/3/library/math.html#math.erf
https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function
https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Loss_of_significance
https://en.wikipedia.org/wiki/Gamma_function

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 22 of 61

math.tau : The mathematical constant τ = 6.283185…, to available precision. Tau is a circle constant equal to 2π, the ratio of a circle’s
circumference to its radius.
math.inf : A floating-point positive infinity. (For negative infinity, use -math.inf.) Equivalent to the output of float('inf').
math.nan : A floating-point “not a number” (NaN) value. Equivalent to the output of float('nan').

List of Important Functions in Math Module
Function Description

ceil(x) Returns the smallest integer greater than or equal to x.

copysign(x, y) Returns x with the sign of y

fabs(x) Returns the absolute value of x

factorial(x) Returns the factorial of x

floor(x) Returns the largest integer less than or equal to x

fmod(x, y) Returns the remainder when x is divided by y

frexp(x) Returns the mantissa and exponent of x as the pair (m, e)

fsum(iterable) Returns an accurate floating point sum of values in the iterable

isfinite(x) Returns True if x is neither an infinity nor a NaN (Not a Number)

isinf(x) Returns True if x is a positive or negative infinity

isnan(x) Returns True if x is a NaN

ldexp(x, i) Returns x * (2**i)

modf(x) Returns the fractional and integer parts of x

trunc(x) Returns the truncated integer value of x

exp(x) Returns e**x

expm1(x) Returns e**x - 1

log(x[, base]) Returns the logarithm of x to the base (defaults to e)

log1p(x) Returns the natural logarithm of 1+x

log2(x) Returns the base-2 logarithm of x

log10(x) Returns the base-10 logarithm of x

pow(x, y) Returns x raised to the power y

sqrt(x) Returns the square root of x

acos(x) Returns the arc cosine of x

asin(x) Returns the arc sine of x

atan(x) Returns the arc tangent of x

atan2(y, x) Returns atan(y / x)

cos(x) Returns the cosine of x

hypot(x, y) Returns the Euclidean norm, sqrt(x*x + y*y)

sin(x) Returns the sine of x

tan(x) Returns the tangent of x

degrees(x) Converts angle x from radians to degrees

radians(x) Converts angle x from degrees to radians

acosh(x) Returns the inverse hyperbolic cosine of x

asinh(x) Returns the inverse hyperbolic sine of x

atanh(x) Returns the inverse hyperbolic tangent of x

cosh(x) Returns the hyperbolic cosine of x

sinh(x) Returns the hyperbolic cosine of x

tanh(x) Returns the hyperbolic tangent of x

erf(x) Returns the error function at x

erfc(x) Returns the complementary error function at x

gamma(x) Returns the Gamma function at x

lgamma(x) Returns the natural logarithm of the absolute value of the Gamma function at x

pi Mathematical constant, the ratio of circumference of a circle to it's diameter (3.14159...)

e mathematical constant e (2.71828..

Exercise: Try to use these functions and write some code.

Example Script: myMath.py
import math

x=22/7

#ceiling function

print(math.ceil(x))

#floor function

print(math.floor(x))

#float absolute function returns answer in float

print(math.fabs(x))

#Real value x truncated to an Integral/integer

print(math.trunc(x))

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 23 of 61

#return real and int part as pair

print(math.modf(x))

#return (mantissa,exponent) where mantissa is real and exponent is integer; x == m * 2**e

print(math.frexp(2))

#verify above result by math.ldexp(x, i)

print(math.ldexp(0.5, 2))

#floating remainder function, returns remainder in float

print(math.fmod(25,7))

#alternatively modulus operator returns remainder in integer

print(25%7)

#copysign(value,sign)

print(math.copysign(x,-0.0))

#factorial of n, here n=5

print(math.factorial(5))

#try math.remainder(x, y)and observe result

print(math.remainder(5,3))

#Nan Functions

print(math.isnan(5.3))

print(math.isnan(0))

#important float('nan')

print(math.isnan(float('nan')))

#try math.isinf(x)

print(math.isinf(0.0/5))

#positive infinity

print(math.isinf(float('inf')))

#negative infinity

print(math.isinf(float('-inf')))

#Greatest common divisor

print("GCD: ",math.gcd(5,15))

#pow(X,y)

print(math.pow(2,5))

#constant values

print("------Constant Values-------")

print(math.pi)

print(math.tau)

print(math.e)

print("-----Hyperbolic Functions-------")

y=math.pi/4;

print("val: ", y)

print(math.cosh(y))

print(math.sinh(y))

print(math.tanh(y))

print(math.acosh(1.32246))

print(math.asinh(0.86867))

print(math.atanh(0.65579))

print("------Angular Conversion-------")

print(math.degrees(y))

print(math.radians(30))

print("-----Trigonometric Functions-------")

y=math.pi/4;

print(math.cos(y))

print(math.sin(y))

print(math.tan(y))

print(math.acos(0.707))

print(math.asin(0.707))

print(math.atan(0.99999999999999))

print("------ Log Functions-------")

print(math.log10(100))

print(math.log2(16))

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 24 of 61

Python Loops

while loop : very much similar to C
Syntax:
loop Initializer
while test_conditon:
 do something...
 loop iterator

Example Script: while_loop.py
x=1

while x<=5:

 print("loop no: ",x)

 x+=1

break and continue Statement:
Example Script: while_break_cont.py
while True:

 x=input("Enter q to quit > ")

 if len(x)==0:

 continue

 if x.lower()=='q':

 print("Loop Terminated")

 break;

 else:

 continue

Working with Lists and Tuples
Example Script: while_list.py
#working with a list

a=[1,2,3,4,5,6,7]

i=0

while i<len(a):

 print("a[",i,"] = ",a[i])

 i+=1

#working witha a tuple

b=("seb","kela","santra","amrood")

i=0

while i<len(b):

 print("b[",i,"] = ",b[i])

 i+=1

Example Script: sum_of_n.py
#sum of first n natural numbers

print("sum of first n natural numbers")

n=int(input("Enter an Integer Number >"))

initialize sum and counter

sum = 0

i = 1

while i <= n:

 sum = sum + i

 i+=1 # update counter

print the sum

print("The sum is", sum)

while-else

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 25 of 61

Loops can have an else statement with loops in python. When condition becomes false, else is executed.

If the else statement is used with a for loop, the else statement is executed when the loop has exhausted

iterating the list.

Example Script: while_else.py
#while-else

i = 0

while i <= 5:

 print("while loop >", i)

 i+=1

else:

 print("while else")

Fibonacci sequence for first n terms
Example Script:while_fibo.py
Fibonacci sequence for first n terms

Up to where?

n = int(input("Enter the Nth term for Fibonacci Series >"))

pre initializing first two terms

n1 = 0

n2 = 1

i = 0

check if the number of terms is valid

while n<=0:

 n=int(input("Please Enter Value greater than 0 > "))

else:

 print("Fibonacci sequence for ",n," terms:")

 while i < n:

 print(n1,end=', ')

 next = n1 + n2

 # updating the terms n1 and n2

 n1 = n2

 n2 = next

 i += 1

Armstrong Number
abcd... = an + bn + cn + dn + ...

Example: 153 = 1*1*1 + 5*5*5 + 3*3*3
Numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748,..

Example Script: while_armstrong.py
#Armstrong Number of N Digits

number=int(input("Enter a Number > "))

to find number of digits change number variable to string

nth = len(str(number))

initialize sum

sum = 0

find the sum of the nth power of each digit

temp = number

while temp > 0:

 digit = temp % 10

 sum += digit ** nth

 temp //= 10

display the result

if number == sum:

 print(number,"is an Armstrong number")

else:

 print(number,"is not an Armstrong number")

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 26 of 61

Armstrong numbers between Range
Example Script: while_armstrong_range.py
Program to find Armstrong numbers between Range

lnum = int(input("Enter Lower Number: "))

hnum = int(input("Enter Higher Number: "))

if(lnum>hnum):

 #swap the numbers

 lnum = lnum+hnum

 hnum = lnum-hnum

 lnum = lnum-hnum

num=lnum

while num <= hnum:

 # order of number

 nth = len(str(num))

 # initialize sum

 sum = 0

 #find the sum of the nth power of each digit

 temp = num

 while temp > 0:

 digit = temp % 10

 sum += digit ** nth

 temp //= 10

 if num == sum:

 print(num)

 num += 1

Prime Number
Example Script: while_prime.py
While Prime Number Program

print("Prime Number Checker".center(50,'-'))

#taking an initial value to enter into while loop

n=1

#taking a valid input

while n<2:

 n=int(input("Enter a Number Greater than 1> "))

p=1 #assume the number is prime

i=2 #initializing the loop with 2

while i<n/2:

 if n%i==0: #test for divisibility

 p=0

 break

 i += 1

if p==1:

 print("%d is a Prime Number"%n)

else:

 print("%d is Not a Prime Number"%n)

Factorial
Example Script: while_fact.py
While Factorial of a Number Program

print(" Find The Factorial".center(50,'-'))

n=0 #initial value to zero

#taking a valid input

while n<1:

 n=int(input("Enter a Number Greater than 0> "))

fact=1 #initialize factorial to zero

i=n

while i>0:

 fact *= i

 i -= 1

#printing the result

print("Factorial of {} is {}".format(n,fact))

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 27 of 61

For Loop

Syntax:
for variable in sequence:

 do something

Example Script: forLoop.py
#for loop example

#creating a list

myList=['a','b','c','d']

for i in myList:

 print(i,end=" ")

Range Function
range(initial value, final value) #final value is excluded

Example Script: forRange1.py
#for in range simple example

for i in range(1,10):

 print(i)

Example Script: forRange2.py
#for in range example 2

#creating a list

myList=['a','b','c','d']

for i in range(len(myList)):

 print(myList[i],end=" ")

for - else
Example Script: for_else.py
#for else example

for i in range(1,10):

 print(i)

else:

 print("Loop is Closed")

Prime Numbers in Range
Example Script: for_primeRange.py
Prime Number in Range

#setting initial value to enter into loop

lnum=1

hnum=1

print("Prime Number in Range".center(50,'-'))

#taking valid inputs

while lnum<2:

 lnum = int(input("Enter Lower Number Greater Than 1: "))

while hnum<2:

 hnum = int(input("Enter Higher Number Greater Than 1: "))

#correcting the Range

if(lnum>hnum):

 #swap the numbers

 lnum = lnum+hnum

 hnum = lnum-hnum

 lnum = lnum-hnum

print("Prime Numbers between",lnum," and ",hnum,":")

for num in range(lnum,hnum + 1):

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 28 of 61

 #using for-else loop

 for i in range(2,num):

 if (num % i) == 0:

 break

 else:

 print(num)

Factors of a Number

Example Script : for_NumFactors.py
factors of a number

num=1

while num<2:

 num=int(input("Enter a Number Greater than 2 > "))

print("Factors of",num,":")

for i in range(1, num + 1):

 if num % i == 0:

 print(i)

Working with Dictionaries

Example Script: forDict.py
#for loop and working with Dictionaries

#creating a dictionary

states = {

 'H': "Haryana",

 'P':"Punjab",

 'HP':"Himachal Pradesh",

 'UP':"Uppar Pradesh",

 'B':"Bihar"

 }

#printing keys directly

print("Printing Keys".center(50,'-'))

for k in states:

 print(k)

#printing keys Alternatively using .keys() method

print("Alternatively Printing Keys".center(50,'-'))

for k in states.keys():

 print(k)

#printing values using .values() method

print("Printing Values".center(50,'-'))

for v in states.values():

 print(v)

#printing key and values using .items()

for k, v in states.items():

 print("State Code: {0} \t Name: {1}".format(k, v))

Example Sctipt: for_fact.py
#factorial of a Number

#taking initial values

fact=1

n=0

#taking valid input

while n<1:

 n=int(input("Enter a Number Greater than 1 >"))

for i in range(1,n+1):

 fact *= i

#printing the Result

print(fact)

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 29 of 61

For loop working with Lists

Example Script: for_squareInRangeList.py
#Exaple of creating a list with special purpose

#taking inputs

print("List of Squares between Range".center(50,'-'))

lnum = int(input("Enter First Number: "))

hnum = int(input("Enter Second Number: "))

#correcting the Range

if(lnum>hnum):

 #swap the numbers

 lnum = lnum+hnum

 hnum = lnum-hnum

 lnum = lnum-hnum

#creating empty list

squares=[]

print("List of Squares between {} and {}".center(50,'-').format(lnum,hnum))

for i in range (lnum,hnum+1):

 squares.append(i*i)

print(squares)

#alternatively

print("AlternativelyList of Squares between {} and {}".center(50,'-').format(lnum,hnum))

mySquare=[i*i for i in range(lnum,hnum+1)]

print(mySquare)

Counting the Vowels/any character
Example Script: forVowelCounter.py
Count of each vowel in a string using dictionary

creating string of vowels

vowels = 'aeiou'

creating a blank string

myStr =""

while len(myStr)==0:

 myStr=input("Enter your String > ")

make string case free using casefold() method

myStr = myStr.casefold()

creating a dictionary where each vowel is a key with value = 0

vowelCount = {}.fromkeys(vowels,0)

Counting the vowels

for char in myStr:

 if char in vowelCount:

 vowelCount[char] += 1

#printing the result

print(vowelCount)

Alternatively

Example Script: foranyChar.py
creating string of desigred charactres

SearchString = 'aeiou'

myStr =""

while len(myStr)==0:

 myStr=input("Enter your String > ")

make string case free using casefold() method

myStr = myStr.casefold()

Counting the vowels/desired charactres

CountCharacters = {x:sum([1 for char in myStr if char == x]) for x in SearchString}

#printing the result

print(CountCharacters)

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 30 of 61

Python Function & Return

A function is a piece of program code that is:

• A self-contained coherent piece of functionality.

• Callable by other programs and modules.

• Passed data using arguments (if required) by the calling module.

• Capable of returning results to its caller (if required).

A function has two important keywords:

• def # used to create a new function / define a function

• return # used to return back to caller with either with none or as appropriate

Note: A function would work just fine without a return statement but it is good practice to use it

Return Statement Examples:

return # None

return True # True

return False # False

return r1, r2, r3 # returns three values/Results

return dict(a=v1,b=v2) # returns a dictionary similarly a list or tuple etc

return a+b+c #returns result of an expression

Example Script: myFunction1.py
#def is keyword use to write a new function

def myFunction():

 #body of the function

 print("hello")

 #return statement (optional)

 return

print("Calling a Function".center(50,'-'))

#calling a function

myFunction()

print("Calling a Function in Loop".center(50,'-'))

#calling a function in loop

for i in range(1,6):

 myFunction()

print("What does a function return".center(50,'-'))

#what does a function return in Python

print("{}".format(myFunction()))

Imp: myFunction() may contain arguments in '()'

Example Sctipt: mySum.py
#creating new function

def mySum(a,b): #list of arguments

 #return result of expression

 return a+b

print("Calling a Function with literal Values".center(50,'-'))

#calling a function

print("{}".format(mySum(10,25)))

print("Calling a Function using Inputs".center(50,'-'))

#taking inputs as string

x =input("Enter a Number > ")

y =input("Enter another Number > ")

#taking two variables and intialise them to zero as default value

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 31 of 61

#by doing this if we enter empty while taking inputs, it will not prompt an error

if len(x)==0:

 var1=0

else:

 var1=int(x) #type casting variable

if len(y)==0:

 var2=0

else:

 var2=int(y) #type casting variable

print("Sum of both numbers".center(50,'-'))

print("{}".format(mySum(var1,var2)))

User Defined function to find out the length of a String

Example Script: myStrLen.py
#Creating a user defined function

def myLen(myString):

 strLen=sum([1 for i in myString])

 return strLen

#using a Fixed Sting directly

print("Length of My String is {}".format(myLen("How are You?")))

#using a Fixed Sting using a variable

strVar="How are You?"

print("Length of My String is {}".format(myLen(strVar)))

#Taking input

print("Length of My String is {}".format(myLen(input("Enter a String > "))))

Recursion or Recursive Function

Example Script: myFact.py
#factorial using recursion

def myFact(num):

 if num == 1 or num == 0:

 return num

 else:

 return num*myFact(num-1)

#taking inputs

x=int(input("Enter a Number > "))

#calling function

n=myFact(x)

#printing results with auto assignment

print("Factorial of {} is {}".format(x,n))

main() in Python

what is __name__ = __main__ ?

underscore underscore name underscore underscore = underscore underscore main underscore underscore

We can decide whether we want to run the script. Or that we want to import the functions defined in the

script.

• When we run the script containing, the __name__ variable equals __main__. The Python interpreter

runs the "source file" as the main program, it sets the special variable (__name__) to have a value

("__main__").

• When we execute the main function, it will then read the "if" statement and checks whether

__name__ does equal to __main__.

• When we import the script, it will contain the name of the script. The Python interpreter reads a

source file, it will execute all the code found in it.

• In Python "if__name__== "__main__" allows you to run the Python files either as reusable modules

or standalone programs.

Example Script as standalone: name_main.py

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 32 of 61

#crating a user defined function

def myFunction():

 print ('__name__ = ' + __name__)

 return

#creating a main function

def main():

 myFunction()

 return

#if we run the script following statement results in True

#if we use this script in other script using import then

#following statement resutls in False

if __name__ == '__main__':

 main()

Result: __name__ = __main__

Example Script as import to previous script: myNameMain.py
import name_main as nm

nm.myFunction()

Result: __name__ = name_main #name of the imported script

We can Directly create a main function and can also use it

Example Script : mainOnly.py
#creating a main function

def main():

 print("This is main")

 return

#calling a main function

main()

Example Script: mainOnlyImport.py
#importing mainOnly

import mainOnly as myMain

myMain

alternatively:
#importing mainOnly

import mainOnly as myMain

#if __name__ == '__main__':

myMain

OR other way is:

#importing mainOnly

import mainOnly as myMain

myMain.main()

Exercises:

Create a menu which first takes a range of numbers and then it ask if you want to

• Check prime numbers in range

• Check Armstrong numbers in range

• Square in range

 and then print accordingly

each option must be implemented with functions

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 33 of 61

Default Value of Arguments in a Function

Example Script: defaultValueFunction.py
#defalut Value Argument Function

def myFunc(a=0,b=0,c=0):

 return a+b+c

#let's take three integer objects

x = 15

y = 10

z = -2

print("calling function with no argument".center(50,'-'))

print("Output without Argument : {} ".format(myFunc()))

print("\n"+"calling function with all three arguments".center(50,'-'))

print("Output with all three Arguments : {} ".format(myFunc(x,y,z)))

print("\n"+"calling function with any two arguments".center(50,'-'))

print("Output with any two Arguments : {} ".format(myFunc(x,y)))

print("Output with any two Arguments : {} ".format(myFunc(y,z)))

print("Output with any two Arguments : {} ".format(myFunc(z,x)))

print("\n"+"calling function with only one argument".center(50,'-'))

print("Output with only one Argument : {} ".format(myFunc(x)))

print("Output with only one Argument : {} ".format(myFunc(y)))

print("Output with only one Argument : {} ".format(myFunc(z)))

Creating a Dictionary using Function

Example Script: dictFunction.py
#creating an empty dictionary

mydict={}

def dictFunc(k,v):

 mydict.update({k:v})

 return mydict

#creating an exit character and empty key and value objects

x=""

myKey=""

myVal=""

while x.casefold() != 'q':

 #clearing the exit character and other variables

 x=""

 myKey=""

 myVal=""

 #printing dictionary

 if len(mydict.keys())==0:

 print("Dictionary is Empty")

 else:

 print("Used Keys are : {}".format(mydict.keys())+"\n")

 #taking unique key input

 while len(myKey)==0 or myKey in mydict.keys():

 myKey=input("Enter a Unique Key > "+"\n")

 #taking value

 while len(myVal)==0:

 myVal=input("Enter a Value for {} :".format(myKey)+"\n")

 #calling dictionary function

 dictFunc(myKey,myVal)

 #prompt for exit or continue

 x=input("Press Enter to Continue or q to quit > ")

print("\n"+"Dictionay is:".center(50,'-'))

print(mydict)

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 34 of 61

Python File I/O Handling

 File Modes:
Mode Description

'r' Open a file for reading. (default)

'w' Open a file for writing. Creates a new file if it does not exist or truncates the file if it exists.

'a' Open for appending at the end of the file without truncating it. Creates a new file if it does not exist.

't' Open in text mode. (default)

'x' Open a file for exclusive creation. If the file already exists, the operation fails.

'b' Open in binary mode.

'+' Open a file for updating (reading and writing)

There can be combination of Modes like: wb, rb, ab, wt, w+, r+, a+ etc.

Opening a file with any mode/s is similar to C

fp = open("test.txt",mode = 'r',encoding = 'utf-8')

or

with open("test.txt",mode = 'r',encoding = 'utf-8') as fp

Other Python File Methods
Method Description

close() Close an open file. It has no effect if the file is already closed.

detach() Separate the underlying binary buffer from the TextIOBase and return it.

fileno() Return an integer number (file descriptor) of the file.

flush() Flush the write buffer of the file stream.

isatty() Return True if the file stream is interactive.

read(n) Read almost n characters form the file. Reads till end of file if it is negative or None.

readable() Returns True if the file stream can be read from.

readline(n=-1) Read and return one line from the file. Reads in at most n bytes if specified.

readlines(n=-1) Read and return a list of lines from the file. Reads in at most n bytes/characters if specified.

seek(offset, from) Change the file position to offset bytes, in reference to from (start=0, current=1, end=2).

seekable() Returns True if the file stream supports random access.

tell() Returns the current file location.

truncate(size=None) Resize the file stream to size bytes. If size is not specified, resize to current location.

writable() Returns True if the file stream can be written to.

write(s) Write string s to the file and return the number of characters written.

writelines(lines) Write a list of lines to the file.

Let's Start: first create a file demo.txt

Example Script: readFile.py #Reading the Entire file
#file Read program

fp = open("demo.txt", mode = 'r') # encoding is optional

fp = open("demo.txt", mode = 'r', encoding = 'utf-8')

#reading entire file

print(fp.read())

#closing the file

fp.close()

Example Script: readNextLine.py #default first line
#Reading next line program

fp = open("demo.txt", mode = 'r') # encoding is optional

#reading first line of the file

print(fp.readline())

#try using end="" to avoid extra new line character

#print(fp.readline(),end="")

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 35 of 61

#reading next line of the file

print(fp.readline())

#closing the file

fp.close()

Example Script: readMultipleLine.py
#Reading line by line program

fp = open("demo.txt", mode = 'r') # encoding is optional

for i in range(0,9):

 print(fp.readline(),end="")

#closing the file

fp.close()

Example Script: numberOfLines.py
#couting number of lines in a file

fileName='demo.txt'

numLines = 0

with open(fileName, 'r') as fp:

 for line in fp:

 numLines += 1

print("Number of lines in {} are: {}".format(fileName,numLines))

fp.close()

Example Script: readSingleLine.py #default first line
#Reading line by line program

fileName='demo.txt'

numLines = 0

with open(fileName, 'r') as fp:

 for line in fp:

 numLines += 1

fp.close()

fp = open(fileName, mode = 'r')

for i in range(0,numLines):

 print(fp.readline(),end="")

fp.close()

Example Script: readingNcharacters.py
#reading N characters

fileName='demo.txt'

fp=open(fileName, 'r')

print("Is file {} Readable ? : {} ".format(fileName,fp.readable()))

print("Is file {} Seekable ? : {} ".format(fileName,fp.seekable()))

print("Is file {} Writable ? : {} ".format(fileName,fp.writable()))

print("Is file Stream of {} interactive with tty? : {} ".format(fileName,fp.isatty()))

#reading first N characters

print(fp.read(5))

#or reading next N

print(fp.readline(5))

#fp.seek(position, from where= 0=start/1=relative to current/2=end of file)

fp.seek(0,0) #seeking 0th char of firt line

print(fp.readline())

fp.seek(0,1) #seeking 0th char of next line or seeking from current pos

print(fp.readline())

#size of the file

fp.seek(0,2) #seeking last character

print("file contains {} characters".format(fp.tell()))

print("Size of file is {} bytes".format(fp.tell()))

Creating to file and Writing to it

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 36 of 61

Example Script: fileWrite.py
#creating a file and writing to it

myFile="new.txt"

#opening in write mode

fp=open(myFile,'w')

print("File Descriptor assigned is {} ".format(fp.fileno()))

#creating a blank string variable/object and escape char

myStr=""

esc=""

while esc.casefold() != 'q':

 #re-assigning empty value

 myStr=""

 esc=""

 #taking input

 myStr=input("Enter a Line to File > "+"\n")

 fp.write(myStr+"\n") # try without newline character

 #or Try this line

 #fp.writelines(myStr+"\n")

 esc=input("Press Enter to Continue and q to Quit > "+"\n")

fp.close()

Appending a File:
Example Script: appendFile.py
#taking an existing file

myFile="new.txt"

#opening in append mode

fp=open(myFile,'a+')

print("File Descriptor assigned is {} ".format(fp.fileno()))

#creating a blank string variable/object and escape char

myStr=""

esc=""

while esc.casefold() != 'q':

 #re-assigning empty value

 myStr=""

 esc=""

 #taking input

 myStr=input("Enter a Line to File > "+"\n")

 fp.write(myStr+"\n") # try without newline character

 #or Try this line

 #fp.writelines(myStr+"\n")

 esc=input("Press Enter to Continue and q to Quit > "+"\n")

fp.close()

Example Script: listFile.py
#Writing a list to a file

#file name

myFile="listFile.txt"

#creating a list

myList=["Once there was a Crow.", "He was very thirsty.", "He flew eveywhere in search of water"]

#wrting list into file

fp = open(myFile, "w")

for line in myList:

 fp.write(line+"\n")

fp.close()

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 37 of 61

Alternatively using writelines()
#Writing a list to a file

#file name

myFile="listFile.txt"

#creating a list

myList=["Once there was a Crow.\n","He was very thirsty.\n","He flew here and there in

search of water\n"]

#wrting list into file

fp = open(myFile, "w")

#Writing all lines at once

fp.writelines(myList)

fp.close()

Dealing with Image File
JPEG headers contain information like height, width, number of color (grayscale or RGB) etc.

Marker Name Marker Identifier Description

SOI 0xd8 Start of Image

APP0 0xe0 JFIF application segment

APPn 0xe1 – 0xef Other APP segments

DQT 0xdb Quantization Table

SOF0 0xc0 Start of Frame

DHT 0xc4 Huffman Table

SOS 0xda Start of Scan

EOI 0xd9 End of Image

SOF0 (Start Of Frame 0) marker:

 Field Size Description

 Marker Identifier 2 bytes 0xff, 0xc0 to identify SOF0 marker

 Length 2 bytes This value equals to 8 + components*3 value

 Data precision 1 byte This is in bits/sample, usually 8
 (12 and 16 not supported by most software).

 Image height 2 bytes his must be > 0

 Image Width 2 bytes This must be > 0

 Number of components 1 byte Usually 1 = grey scaled, 3 = color YcbCr or YIQ
 4 = color CMYK
 Each component 3 bytes Read each component data of 3 bytes. It contains,
 (component Id(1byte)(1 = Y, 2 = Cb, 3 = Cr, 4 = I, 5 = Q),
 sampling factors (1byte) (bit 0-3 vertical., 4-7 horizontal.),
 quantization table number (1 byte)).

Remarks: JFIF uses either 1 component (Y, greyscaled) or 3 components (YCbCr, sometimes called YUV, colour).

Example Script: imgPixles.py
#working with image file

#creating a function to deal with image

def myImg(filename):

 # open image for reading in binary mode

 with open(filename,'rb') as img:

 # height of image (in 2 bytes) is at 164th position

 img.seek(163)

 # read the 2 bytes

 a = img.read(2)

 # calculate height (2 bytes)

 height = (a[0] << 8) + a[1]

 # next 2 bytes is width

 a = img.read(2)

 # calculate width (2 bytes)

 width = (a[0] << 8) + a[1]

 print("Image Resolution is {} x {}: ".format(width,height))

myImg("abc.jpg")

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 38 of 61

Important OS Methods Related To Directories and Files

Important Functions related to Directories

Example Script: osDir.py
#important Function Related to Directory

import os

#a String Object for New Dir Name

newDir='preltex'

updatedDir='Preltex'

#print current working directory using os.getcwd

print("Print Current Working Directory".center(50,'-'))

print(os.getcwd())

print("\n"+"Create New Directory if does not exists".center(50,'-'))

#creaking a new directory

#os.mkdir('name_of_dir')

if os.path.isdir(newDir): #testing if directory already exists

 print("Directory Exists")

else:

 os.mkdir(newDir)

 print("Directory {} Created".format(newDir))

#change working directory

print("\n"+"Change Working Directory to {}".center(50,'-').format(newDir))

os.chdir(newDir)

#print current working directory

print(os.getcwd())

print("\n"+"Resolving Path to Parent Dir".center(50,'-'))

#resolving path of current directory

from pathlib import Path

d = Path().resolve().parent

#also try following code

#print(d)

#print(d.parent)

#print(d.parent.parent)

#changing directory to parent directory

os.chdir(d)

print(os.getcwd())

print("\n"+"Rename {} to {}".center(50,'-').format(newDir,updatedDir))

#renaming an existing directory

os.renames(newDir,updatedDir)

#testing

if os.path.isdir(newDir): #testing if directory already exists

 print("Direcoty {} Exists".format(newDir))

elif os.path.isdir(updatedDir): #testing if directory name is updated

 print("Now Direcoty is {} ".format(updatedDir))

print("\n"+"Creating List of Directories and Files".center(50,'-'))

#creating list of files and directories of current directory

dirList=os.listdir(os.getcwd())

#printing list of files and directories in a directory

for x in dirList:

 print(x)

print("\n"+"Checking Before Removing Directory".center(50,'-'))

#testing before removing

if os.path.isdir(updatedDir): #testing if directory already exists

 print("Directory {} Exists".format(updatedDir))

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 39 of 61

print("\n"+"Removing Directory".center(50,'-'))

#Removing Directory

os.rmdir(updatedDir)

print("\n"+"Checking After Removing Directory".center(50,'-'))

#testing after Removal

if os.path.isdir(updatedDir): #testing if directory already exists

 print("Direcoty {} Exists".format(updatedDir))

else:

 print("Directory {} is Removed".format(updatedDir))

Important Functions related to Files
Example Script: osFile.py
#important Function Related to Files

import os

#creating a new file name and updated file name objects

newFile="myFile.txt"

updatedFile="myUpFile.txt"

print("Creating A New File".ljust(50,'.'))

#creating a file if does not exist

if os.path.isfile(newFile):

 print("File {} Already Exists".format(newFile))

else:

 fp=open(newFile,'w')

 fp.write("Hello There\nHow are You?")

 fp.close()

 print("File Successfully Created")

#rename a file

if os.path.isfile(newFile):

 os.rename(newFile,updatedFile)

 print("File Renamed from {} to {}".format(newFile,updatedFile))

else:

 print("File already Renamed to {}".format(updatedFile))

#test if operation is done

if os.path.isfile(updatedFile):

 print("File {} Exists".format(updatedFile))

#removing a file

if os.path.isfile(updatedFile):

 print("Removing {}".ljust(50,'.').format(updatedFile))

 os.unlink(updatedFile)

 #or try this

 #os.remove(updatedFile)

#test if remove operation is done

if os.path.isfile(updatedFile):

 print("File {} Exists".format(updatedFile))

else:

 print("File {} Removed".format(updatedFile))

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 40 of 61

Python Class and Object

Important Terms about Object Oriented Programming in Python

1. Class:

A class in OOPs is a blueprint through which objects are created. It is a container which has two important components:

• Attribute/s : A Class Attribute is a Python variable that belongs to class

• Method/s: A method is nothing but a function associated with class

2. Object:

It is an instance of the class which actually implements the blueprint of the class. for sake of simplicity we can

understand an object as variable which has all properties of the class it belongs to. An object has two properties:

• Attribute : An instance/object attribute is a Python variable belonging to one, and only one, object.

• Behavior: Behavior is defined by the method of a class, that how it behaves with different data set/values.

3. self:

As we call a function with parameters, we have to provide list of parameters/arguments to it. Likewise when we create

an object or we call a method from object's class, then the first argument passed to that method or attribute initializer

is object (as it is like a variable) itself. so self keyword represents object itself.

4. __init__ : (similar to new constructor in Java)

It is a reserved and special method of Python to initialize the attributes of the class. We can understand it as a

constructor and it is automatically called when an object of a class is created. When __init__ is run/called class

attributes are initialized and assigned to object.

To check class of any object use type() method

Example Script : type.py
#Creating Objects of Different Classes

w=True

x=10

y=2.3

z='hello'

myList=['a','b']

myTuple=(1,2,3)

mySet={'a',1,'hello'}

myDict={'a':'apple','b':'ball'}

#Checking Classes

print(" Checking Class using type()".center(50,'-'))

print(type(w))

print(type(x))

print(type(y))

print(type(z))

print(type(myList))

print(type(myTuple))

print(type(mySet))

print(type(myDict))

print("\n"+"Alternatively Checking Class".center(50,'-'))

print(w.__class__.__name__)

print(x.__class__.__name__)

print(y.__class__.__name__)

print(z.__class__.__name__)

print(myList.__class__.__name__)

print(myTuple.__class__.__name__)

print(mySet.__class__.__name__)

print(myDict.__class__.__name__)

This script shows that everything in Python (or any OOP Language) is an object of some class

Creating a Class and an Object

Example Script: firstClass.py

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 41 of 61

#Creating first calss

class myClass:

 pass # pass is used to tell the Python Language interpreter

 # that this code block will be written later

#creating an object/instance of myClass

x=myClass()

#checking if it works or not

print(type(x))

print(x.__class__.__name__)

Imp: Python uses class keyword to create a new class like it uses def for creating new function/method.

Creating a Full Class

Example Script: MyCar.py
#Creating a Class MyCar()

class MyCar:

 "Car Blueprint"

 #attributes of the class is defined as

 def __init__(self, model, color, company, speedLimit):

 self.color = color.title()

 self.company = company.title()

 self.speedLimit = speedLimit

 self.model = model.title()

 #methods of the class MyCar defines behavior of the car

 def start(self): #takes one argument i.e. object of the class

 return "started".title()

 def stop(self): #takes one argument i.e. object of the class

 return "stopped".title()

 def accelarate(self): #takes one argument i.e. object of the class

 return "accelarating...".title()

 def changeGear(self, gear): #takes Two arguments: object, gear value

 return "gear changed to {}".title().format(gear)

#creating objects and initializing them with arguments

print(" Creating Objects ".center(50,'-'))

maruthiSuzuki = MyCar("ertiga", "white", "suzuki", 60)

audi = MyCar("A6", "red", "audi", 80)

#printing object properties for Maruti

print("\n"+" Printing Object Properties for Martuti ".center(50,'-'))

print("Company : "+maruthiSuzuki.company)

print("Model : "+maruthiSuzuki.model)

print("Color : "+maruthiSuzuki.color)

print("Top Speed : ",maruthiSuzuki.speedLimit)

print(maruthiSuzuki.start())

print(maruthiSuzuki.accelarate())

print(maruthiSuzuki.changeGear("Three"))

print((maruthiSuzuki.stop()))

#printing object properties for Audi

print("\n"+" Printing Object Properties for Audi ".center(50,'-'))

print("Company : "+audi.company)

print("Model : "+audi.model)

print("Color : "+audi.color)

print("Top Speed : ",audi.speedLimit)

print(audi.start())

print(audi.accelarate())

print(audi.changeGear(5))

print((audi.stop()))

#printing class

print("\n"+" Printing Class ".center(50,'-'))

print(type(maruthiSuzuki))

print(maruthiSuzuki.__class__.__name__)

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 42 of 61

Take Another Example of Employee Class where:

Attributes of employees are:

• First Name

• Last Name

• Salary

Methods are:

• Full Name

• email-Id

Example Script: EmployeeClass.py
#Creating an employee class

class Employee:

 "attributes are defined here"

 def __init__(self,firstName,lastName,salary):

 self.firstName = firstName.title()

 self.lastName = lastName.title()

 self.salary = salary

 #"behaviors are defined here"

 def fullName(self):

 return '{} {}'.format(self.firstName,self.lastName)

 def email(self):

 return

'{}.{}@preltex.in'.format(self.firstName.casefold(),self.lastName.casefold())

#creating objects

emp1 = Employee('suresh','mehta',25000)

emp2 = Employee('ramesh','dinker',25500)

emp3 = Employee('ananat','gupta',65000)

#printing attributes

print("\n"+" Printing Attributes ".center(50,'-'))

print(emp1.firstName) #attributes do not have () brackets at the end

print(emp2.lastName)

print(emp3.salary)

print("\n"+" Accessing Methods ".center(50,'-'))

print(emp1.fullName())

print(emp1.email())

print(emp2.fullName())

print(emp2.email())

print(emp3.fullName())

print(emp3.email())

print("\n"+" Printing Class ".center(50,'-'))

print(emp1.__class__.__name__)

print(emp2.__class__.__name__)

print(emp3.__class__.__name__)

#printing object locations

print(" Printing Object Locations ".center(50,'-'))

print(emp1)

print(emp2)

print(emp3)

print("\n"+" Trying Method without () ".center(50,'-'))

print(emp1.fullName)

print(emp1.email)

print(emp2.fullName)

print(emp2.email)

print(emp3.fullName)

print(emp3.email)

#now match the addresses with object-addresses

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 43 of 61

Python built-in class attributes with description

__doc__ : Returns the class documentation string, if defined.

__module__ : Return the name of the module in which the class is defined.

__name__ : Return the name of the class.

__dict__ : Returns a dictionary of classes namespace.

Example Script: StudentClass.py

class Student:

 "A Student Class with Important Attributes"

 #Constructor to initialize object with attributes

 def __init__(self,fname,lname,gender,age):

 self.fname = fname.title()

 self.lname = lname.title()

 self.age = age

 if gender.casefold()=='m':

 self.gender = 'Male'

 elif gender.casefold()=='male':

 self.gender = 'Male'

 elif gender.casefold()=='f':

 self.gender = 'Female'

 elif gender.casefold()=='female':

 self.gender = 'Female'

 else:

 self.gender = 'Not-Disclosed'

 #Defining methods

 def FullName(self):

 return '{} {}'.format(self.fname,self.lname)

 def email(self):

 return '{}.{}@myschool.com'.format(self.fname.casefold(),self.lname.casefold())

print(" Printing Builtin Class Attributes ".center(100,'-'))

print ('Student.__name__ = ',Student.__name__)

print ('Student.__doc__ = ',Student.__doc__)

print ('Student.__module__ = ',Student.__module__)

print ('Student.__dict__ = ',Student.__dict__)

#creating an object:

stu1 = Student('karan','arora','m',19)

print("\n"+" Try using Class Attributes with its Object ".center(100,'-'))

#__name__ is bound to class and not with objects

#print ('stu1.__name__ = ',stu1.__name__)

print ('stu1.__doc__ = ',stu1.__doc__)

print ('stu1.__module__ = ',stu1.__module__)

print ('stu1.__dict__ = ',stu1.__dict__)

print("\n"+" Let\'s Access Methods ".center(100,'-'))

print(stu1.email())

print(stu1.FullName())

print("\n"+" Let\'s Try Attributes of Objects ".center(100,'-'))

print(stu1.fname)

print(stu1.lname)

print(stu1.gender)

print(stu1.age)

Exercise: code a class Bike in Python with

Attributes: Company, Model, Color, Top Speed, NM-Torque, Engine-CC etc

Behavior: Start the engine, Stop the engine Speed up, Change gear, Stall

Exercise: code a class Restaurant-Customer in Python with and offer a customer menu based on time input

Attributes: name, time of entry in 24 hrs format

Behavior: breakfast, lunch, dinner, snacks etc

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 44 of 61

OOP (Object Oriented Programming) Concepts in Python

Inheritance:
Inheritance is the basic and most powerful property of any OOP. It is about creating a new class with or without modification to an
existing class. Usually the new or derived class is known as child class and old or base class is known as parent class.

Inheritance Syntax:
 class ParentClass:
 Body of Parent class

 class ChildClass(ParentClass):
 Body of Child class

Import to refer: While creating a Parent Class, it must be generic and should have expansion capabilities.

Let's Take an Example of Polygon which can have n sides; using polygon we can write any child class for say triangle.
Example Script: Polygon.py
#Creating a Polygon Class as Parent Class

class Polygon:

 "The Polygon Class"

 # initializing attributes

 def __init__(self, noOfSides):

 self.n = noOfSides

 self.sides = [0 for i in range(noOfSides)]

 #creating methods

 def inputSides(self):

 self.sides = [float(input("Enter Side No "+str(i+1)+" : ")) for i in range(self.n)]

 def dispSides(self):

 for i in range(self.n):

 print("Side",i+1,"is",self.sides[i])

#Creating Triangle as Derived or Child Class--------------------------

class Triangle(Polygon): # see the parameter

 "Triangle Area and Perimeter"

 #initializing attributes of Triangle objects

 def __init__(self):

 Polygon.__init__(self,3)

 #defining methods

 #Area method

 def Area(self):

 a, b, c = self.sides

 # calculate the semi-perimeter

 s = (a + b + c) / 2

 import math

 return math.sqrt((s*(s-a)*(s-b)*(s-c)))

 #Perimeter Method

 def Perimeter(self):

 a, b, c = self.sides

 # calculate the perimeter

 return a + b + c

#Triangle Class Ends here---------------------------------------

#Creating Rectangle as Derived or Child Class---------------------

class Rectangle(Polygon): # see the parameter

 "Rectangle Area and Perimeter"

 #initializing attributes of Rectangle objects

 def __init__(self):

 Polygon.__init__(self,2)

 #defining methods

 #Area method

 def Area(self):

 a, b, = self.sides

 return (a*b)

 #Perimeter Method

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 45 of 61

 def Perimeter(self):

 a, b, = self.sides

 # calculate the perimeter

 return (2*(a+b))

#Rectangle Class Ends here---------------------------------------

#Creating Object for Triangle

print(" Creating Object for Triangle ".center(100,'-'))

t=Triangle()

t.inputSides()

t.dispSides()

print("Area of Triangle is : {}".format(t.Area()))

print("Perimeter of Triangle is : {}".format(t.Perimeter()))

#Creating Object for Rectangle

print("\n"+" Creating Object for Rectangle ".center(100,'-'))

r=Rectangle()

r.inputSides()

r.dispSides()

print("Area of Rectangle is : {}".format(r.Area()))

print("Perimeter of Rectangle is : {}".format(r.Perimeter()))

print("\n"+" Checking Class ".center(100,'-'))

print(t.__class__.__name__)

print(r.__class__.__name__)

Method Overriding
As we can see __init__ method is defined in both parent as well as child class. While creating object of a child class, __init__ method
of the child class is preferred over base or parent class. There can be any other method also with same name and has the same
preference. For say there could have been an Area method in Polygon class also, but while creating an instance/object of Triangle or
Rectangle, the object would have preferred Area method of Triangle or Rectangle over the Polygon. This is known as method
overriding. Proper way to do so is:

Polygon.__init__(self,3) is equivalent to super().__init__(3)

Built-in functions to check inheritance

• isinstance()

• issubclass()

Example Script: Super.py
#Creating a Polygon Class as Parent Class

class Polygon:

 "The Polygon Class"

 # initializing attributes

 def __init__(self, noOfSides):

 self.n = noOfSides

 self.sides = [0 for i in range(noOfSides)]

 #creating methods

 def inputSides(self):

 self.sides = [float(input("Enter Side No "+str(i+1)+" : ")) for i in

range(self.n)]

#Creating Triangle as Derived or Child Class--------------------------

class Triangle(Polygon): # see the parameter

 "Triangle Area and Perimeter"

 #initializing attributes of Triangle objects and overriding Polygon __init__

 def __init__(self):

 super().__init__(3)

 #Overriding Parent method

 def inputSides(self):

 self.sides = [float(input("Enter Side No "+str(i+1)+" : ")) for i in

range(self.n)]

 #Triangle Class Ends here---------------------------------------

#creating an object

t=Triangle()

print(isinstance(t,Triangle))

print(isinstance(t,Polygon))

print(isinstance(t,float))

print(isinstance(t,object))

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 46 of 61

print(issubclass(Polygon,Triangle))

print(issubclass(Triangle,Polygon))

Multiple Inheritance
Like C++ in Python also a Child or derived class can inherit properties of multiple parent or base classes. Multiple inheritance is
forbidden in Java. A attribute is searched first in the current class. If not found, the search continues into parent classes in depth.

Syntax:
class Parent1:
 pass
class Parent2:
 pass
class NewChild(Parent1,Parent2):
 pass

Multilevel Inheritance
When a child class having a Parent class and that Parent class also having a Parent class and so on... is known as multilevel
inheritance. What properties a derived/child class can have depends upon its level of inheritance in hierarchy.

Syntax:
class MasterParent:
 pass
class Parent(MasterParent):
 pass
class Child(Parent):
 pass

Method Resolution Order (MRO)
Every class in Python is derived from the class object. It is the most base type in Python. So all other classes, either built-in or user-
defines, are derived classes and all objects are instances of object class. It ensures that a class always appears before its parents and
in case of multiple parents, the order is same as tuple of base classes.
MRO of a class can be viewed as the __mro__ attribute (Returns Tuple) or mro() method (Returns List).

Example Script: MultiDrived.py #A Multiple Inheritance
#A Multi-Derived Class

class ParentA:

 pass

class ParentB:

 pass

class Child(ParentA,ParentB):

 pass

#Testing for MRO : Child, ParentA, ParentB, Object

print(Child.__mro__)

print(Child.mro())

Example Script: MultLevel.py #A Multi-Level Inheritance
#A Multi-Level Class

class SuperParent:

 pass

class Parent(SuperParent):

 pass

class Child(Parent):

 pass

#Testing for MRO : Child, Parent, SuperParent, Object

print(Child.__mro__)

print(Child.mro())

Example Script: MultiMulti.py #A Multiple-Multi-Derived Inheritance
#A Multi Level, Multi Derived Class

class A: pass

class B: pass

class C: pass

class AB(A,B):

 pass

class ABC(AB,C):

 pass

class Child(ABC):

 pass

#Testing for MRO : Child, ABC, A,B,C, Object

print(Child.__mro__)

print(Child.mro())

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 47 of 61

Operator Overloading
When an operator behaves differently with different data-types (objects of different classes). For example, the +
operator performs arithmetic addition on two numbers, merge two lists and concatenate two strings.

Class functions that begins with double underscore __ are called special functions in Python. To overload the + sign, we
will need to implement __add__() function in the class. Similarly __str__() method in class make sure that how things
will get printed.

Binary Operators

Comparison Operators

Operator Sepcial Method Operator Sepcial Method
+ __add__(self, other) < __lt__(self, other)
– __sub__(self, other) > __gt__(self, other)
* __mul__(self, other) <= __le__(self, other)
/ __truediv__(self, other) >= __ge__(self, other)
// __floordiv__(self, other) == __eq__(self, other)
% __mod__(self, other)

!= __ne__(self, other)
** __pow__(self, other)

Assignment Operators

Unary Operators

Operator Sepcial Method Operator Sepcial Method
-= __isub__(self, other)

+ __pos__(self, other)
+= __iadd__(self, other)
*= __imul__(self, other) ~

__invert__(self, other)

 /= __idiv__(self, other)
//= __ifloordiv__(self, other)

– __neg__(self, other) %= __imod__(self, other)
**= __ipow__(self, other)

Example Script : OperatorOverloadingComplexNumber.py
#Operator Overloading addition of two complex numbers using +

#Creating a Complex Number Class

class CompNum:

 def __init__(self, x=0, y=0):

 self.x = x

 self.y = y

 # adding two objects

 def __add__(self, num):

 r=self.x + num.x

 i=self.y + num.y

 if i==0:

 return r

 else:

 return r,i

 def __str__(self):

 return self.x, self.y

#Creating Objects

a=CompNum(1,3) #passing two arguments

b=CompNum(7,2)

c="Hello!"+" How? are you?" #adding strings

d=CompNum(5) #passing only one argument

e=CompNum(6)

#prining Results

print("Addition : {}".format(a+b))

print("Addition : {}".format(d+e))

print("{}".format(c))

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 48 of 61

Encapsulation: Data and Method Hiding

Encapsulation is a property of an Object Oriented Programming Language, which allows a class to hide its
data and methods by restricting its direct access/ modification outside the class itself. Although we can
indirectly modify data of an encapsulated variable and can also access encapsulated method with the help of
other methods in the class.

• An encapsulated variable/ data/ method is known as private.
• Non-encapsulated are public variables/ data/ methods.

How to create a Private variable or Method in Python?
Using double underscore
private variable : __a=10
private method: __myFun():

Encapsulated Variable
Example Script: encapVar.py
#creating an encapsulated variable in myClass

class myClass:

 #encapsulated data variable

 __x=20

 __y="Oh this is Encapsulated!"

 #creating a public function

 def myFunc(self):

 return '{} {}'.format(self.__x,self.__y)

#creating object

a=myClass()

#accessing the Public function myFunc()

print(a.myFunc())

#now try to run following code un-commenting one line at a time

#This will give AttributeError which tell us that encapsulated variable is not seen

outside

#print(myClass.__x)

#print(myClass.__y)

#print(a.__x)

#print(a.__y)

Encapsulated Method
Example Script: envapMethod.py
#creating an encapsulated method in myClass

class myClass:

 #encapsulated function

 def __myPrivate(self):

 return "Oh This is a Encapsulated"

 #creating a public function

 def myFunc(self):

 return self.__myPrivate()

#creating object

a=myClass()

#accessing the Public function myFunc()

print(a.myFunc())

#now try to run following code un-commenting one line at a time

#This will give AttributeError which tell us that encapsulated variable is not seen outside

#print(myClass.__myPrivate)

#print(a.__myPrivate)

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 49 of 61

Indirectly modifying value of a private/encapsulated variable in-side class
#creating an encapsulated variable in myClass

class myClass:

 #encapsulated data variable

 __x=20

 #creating a Public modify method

 def modifyEncap(self,updatedVal):

 self.__x = updatedVal

 #creating a public function

 def dispVal(self):

 return self.__x

#creating object

a=myClass()

#accessing the Public function dispVal()

print(a.dispVal())

#Modifying value using modifyEncap() function

a.modifyEncap(50)

#Again accessing the Public function dispVal()

print(a.dispVal())

Important:
According to the official Python documentation, __repr__ is a built-in function used to compute the "official"
string reputation of an object, while __str__ is a built-in function that computes the "informal" string
representations of an object.

Example Script:
#Creating a Class which has __repr__ and __str__ built-in methods

class myClass:

 def __init__(self, a, b):

 self.a = a

 self.b = b

 def __repr__(self):

 return "__repr__ Method of myClass a:%s b:%s" % (self.a, self.b)

 def __str__(self):

 return "__str__ Method of myClass a is %s and b is %s" % (self.a, self.b)

Creating Object and initializing

t = myClass(1024, 'Hello')

Printing Results

print(t) # This calls __str__()

print([t]) # This calls __repr__()

print({t}) # This calls __repr__()

if no __str__ method is defined then __repr__ method is used.
Example Script:
#Creating a Class which has __repr__ and __str__ built-in methods

class myClass:

 def __init__(self, a, b):

 self.a = a

 self.b = b

 def __repr__(self):

 return "__repr__ Method of myClass a:%s b:%s" % (self.a, self.b)

Creating Object and initializing

t = myClass(1024, 'Hello')

Printing Results

print(t) # This calls __str__()

print([t]) # This calls __repr__()

print({t}) # This calls __repr__()

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 50 of 61

Abstraction

Abstraction is a concept or an idea not associated with any specific instance. So in Object Oriented

Programming it is a concept which allows a class to have a method which is only declared and not defined.

Precisely an abstract method does not have any implementation details.

Abstract classes are written when we know what to do, but don't know how to do it. At this point we write

abstract class with abstract method (one or more). Any abstract class cannot be instantiated, so we must

extend them with derived (or child) class to implement abstract methods.

Python already have an abstract Module abc which have and Abstract class ABC and an abstract method

with name abstractmethod. So we need to import ABC and abstractmethod from this module, to do so we

need to write following line before we start writing any abstract class:

from abc import ABC,abstractmethod

Let's Create One:

Example Script: AbstractClass.py
#importing abstract class ABC and abstractmethod from abc.py

from abc import ABC,abstractmethod

#creating an abstract class by extending ABC from abc.py

class myClass(ABC):

 "Abstract Class"

 @abstractmethod #must be written

 def dispaly(self):

 pas

#creating a child class which can extend myClass and impliment display

class Child(myClass):

 "Impliment display method"

 def dispaly(self):

 return "Abstraction is Implemented"

#Creating objects

a=Child()

#accesing method display

print(a.dispaly())

#Try to instantiate myClass() by creating some object

#Now try to un-comment following code

#b=myClass()

What happen when there are more than one @abstractmethod?

Either we have to implement all @abstractmethod in extended child class or if we extend them through

different derived classes then following example is important:

Example Script: abstractMore.py
#importing abstract class ABC and abstractmethod from abc.py

from abc import ABC,abstractmethod

#creating an abstract class by extending ABC from abc.py

class myClass(ABC):

 "Abstract Class"

 @abstractmethod #must be written

 def display(self):

 pas

 @abstractmethod

 def sqr(self,a): #to square a number

 pass

#creating a child class which can extend myClass and implement display

class DispChild(myClass):

 "Implement display method"

 def display(self):

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 51 of 61

 return "Abstraction is Implemented"

 # must keep the sqr method and may not necessarily implement it

 def sqr(self,a):

 pass

#creating a child class which can extend myClass and implement sqr

class SqrChild(myClass):

 "Implement sqr method"

 def sqr(self,a):

 return (a*a)

 # must keep the display method and may not necessarily implement it

 def display(self):

 pas

#Creating objects of DispClass()

a=DispChild()

#accessing method display

print(a.display())

#Creating objects of SqrClass()

b=SqrChild()

#accessing method sqr

print(b.sqr(5))

#Try to instantiate myClass() by creating some object

#Now try to un-comment following code

#b=myClass()

#print(a.sqr())

#print(b.display())

We can Implement more than one extended/child class from an abstract class.

Example AnimalType.py
#importing abstract class ABC and abstractmethod from abc.py

from abc import ABC,abstractmethod

#Creating an Abstract Class Animal

class Animal(ABC):

 @abstractmethod

 def Type(self):

 pass

#Creating a child Class Cow from Animal

class Cow(Animal):

 #implementing Abstract Method Type

 def Type(self):

 return "Domestic"

#Creating a child Class Dog from Animal

class Dog(Animal):

 #implementing Abstract Method Type

 def Type(self):

 return "Pet"

#Creating a child Class Lion from Animal

class Lion(Animal):

 #implementing Abstract Method Type

 def Type(self):

 return "Wild"

#Creating Objects

Rita=Cow()

Tomy=Dog()

Alex=Lion()

#Printing Types of Animals

print(Rita.Type())

print(Tomy.Type())

print(Alex.Type())

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 52 of 61

Polymorphism in Python, Overriding and Overloading

Polymorphism is an object-oriented programming concept that refers to the ability of a variable, function or object to

take on multiple forms. A language that features polymorphism allows developers to program in the general rather than

program in the specific. Polymorphism is more like operator overloading, where one operator behaves differently.

Polymorphism lets us define methods in the child class that have the same name as the methods in the parent class. This

process of re-implementing a method in the child class is known as Method Overriding.

In nutshell Polymorphism means same function(method) name but different behavior for different inputs.

Method Overriding

• Two different classes have same method name but different behavior.

• A Parent class and a Child class have same method name, so an object of child class overrides the method of

parent class and executes the method of its own class (i.e. child class).

Example Script: methodOverriding.py
#Parent Class

class Parent:

 "This is a Parent Class"

 def Disp(self):

 return "This is a Parent Class Disp Method"

#Child Class

class Child(Parent):

 "This is a Child Class extended from Parent Class"

 def Disp(self):

 return "This is a Child Class Disp Method"

#Printing Results for Parent Class

p=Parent()

c=Child()

#Printing Results

print(p.__class__.__name__)

print(p.Disp())

#Printing Results for Child Class

print(c.__class__.__name__)

print(c.Disp())

What if Child class does not have a Disp method

Example Script:
#Parent Class

class Parent:

 "This is a Parent Class"

 def Disp(self):

 return "This is a Parent Class Disp Method"

#Child Class

class Child(Parent):

 "This is a Child Class extended from Parent Class"

#Creating Objects

p=Parent()

c=Child()

#Printing Results for Parent Class

print(p.__class__.__name__)

print(p.Disp())

#Printing Results for Child Class

print(c.__class__.__name__)

print(c.Disp())

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 53 of 61

Variable Overriding; Example Script: VarOverriding.py
#Parent Class

class Parent:

 "This is a Parent Class"

 val=50

#Child Class

class Child(Parent):

 "This is a Child Class extended from Parent Class"

 val=100

#Printing Results for Parent Class

p=Parent()

c=Child()

#Printing Results

print(p.__class__.__name__)

print(p.val)

print(c.__class__.__name__)

print(c.val)

Similarly if Child class does not have the attribute val, then automatically val or Parent class is executed

Method Overloading : When same method behaves differently with different parameters

Example Script: methodOverloading.py
#Method Overloading

class Hello:

 "Say Hello!"

 def sayHello(self, name=None):

 if name==None:

 print("Hello")

 else:

 print("Hello {}".format(name))

#Creating object

ram=Hello();

ram.sayHello() #Calling sayHello() without parameters

ram.sayHello("Ram") #Calling sayHello() with parameters

Example Script: MethodOverLoading_Polygon.py
#Polygon Method Overloading

class Polygon:

 "Area of any Polygon based on parameters"

 def Area(self,*args):

 count=0

 for i in args:

 count += 1

 #Assuming for Square

 if count==1:

 import math

 return math.pow(args[0],2)

 #Assuming for Rectangle

 if count==2:

 return args[0]*args[1]

 #assuming for Triangle

 if count==3:

 s=(args[0]+args[1]+args[2])/2

 import math

 return math.sqrt((s*(s-args[0])*(s-args[1])*(s-args[2])))

#Creating objects

sqr=Polygon()

rect=Polygon()

trig=Polygon()

#Printing Area

print("Area of Squr is {}".format(sqr.Area(3)))

print("Area of Rect is {}".format(rect.Area(3,4)))

print("Area of Trig is {}".format(trig.Area(3,4,5)))

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 54 of 61

Exception Handling

There are (at least) two distinguishable kinds of errors: syntax errors and exceptions.

Syntax Errors:

They are also known as parsing errors. The parser repeats the offending line and displays a little ‘arrow’ pointing at the earliest point

in the line where the error was detected. The error is caused by (or at least detected at) the token preceding the arrow.

Example:
while True print('Hello world')

 ^

SyntaxError: invalid syntax

Exceptions (Run time errors):

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is made to execute it. Errors

detected during execution are called exceptions and are not unconditionally fatal. Most exceptions are not handled by programs.

Example:
x=5

y=0

print("{}",format(x/y))

This Code will Generate exception: ZeroDivisionError: division by zero

Example:
x=5

print("{}".format(x+z))

This Code will Generate exception: NameError: name 'z' is not defined

Example:
x=5

print("{}".format(x+"Hello"))

This Code will Generate exception: TypeError: unsupported operand type(s) for +: 'int' and 'str'

Above ZeroDivisionError, NameError, TypeError are built-in exceptions. The string printed as the exception type is the name of the
built-in exception that occurred. This is true for all built-in exceptions, but need not be true for user-defined exceptions.

Exception Handling:
exception Exception
All built-in, non-system-exiting exceptions are derived/extended from this class. All user-defined exceptions should also be derived
from this class. It is possible to write programs that handle selected exceptions.

Most of the run-time-errors are due to wrong or invalid user inputs. we need to write an efficient code in such a way that Python
interpreter does not throw an exception in a way it does, this is called exception handling. To handle an exception we need to find
the error, following process will help us to understand this:

✓ Spotting an Error (may be by Built-in exception)
✓ Take the Caution where user input can go wrong (try Statement)
✓ Write a block to fix the error if thrown by the Python interpreter (except-Block)
✓ Write a block where everything is going good (else-Block)
✓ Write a final block which executes weather your code throw an exception or not (finally-Block)

This is How it will Work:
try: First (try to) run this code, to get an exception.
except: Run this code when an exception is thrown.
else: Run this code when no exception is thrown.
finally: Always run this code

Example Script: FirstExceptionHandlingProgram.py
#Our First Exception Handling Code

x=int(input("Enter A Number : "))

#try to enter y as 0 (zero)

y=int(input("Enter Other Number : "))

try:

 x/y # We try here to catch the exception

except Exception:

 print("Ops! You Are Trying an Illegal Division")

else:

 print("{} divided by {} is : {} ".format(x,y,x/y))

finally:

 print("Exception Handling is Successful")

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 55 of 61

How to print Interpreter generated Exception?
Example Script: printError.py
#Printing Python Generated Exception

x=int(input("Enter A Number : "))

#try to enter y as 0 (zero)

y=int(input("Enter Other Number : "))

try:

 x/y # We try here to catch the exception

#Creating object of class Exception

except Exception as err:

 print("Ops! You Are Trying an Illegal Division")

 #printing error

 print("Python Error >>> {}".format(err))

else:

 print("{} divided by {} is : {} ".format(x,y,x/y))

finally:

 print("Exception Handling is Successful")

Handling Specifically a built-in exception here ZeroDivisionError
Example Script: Handling ZeroDivisionError.py
#ZeroDivisionError Exception Handling Code

x=int(input("Enter A Number : "))

#try to enter y as 0 (zero)

y=int(input("Enter Other Number : "))

try:

 x/y # We try here to catch the exception

#See the name of Built-in Exception and its Object

except ZeroDivisionError as err:

 print("Ops! You Are Trying an Illegal Division")

 #printing error

 print("Python Error >>> {}".format(err))

else:

 print("{} divided by {} is : {} ".format(x,y,x/y))

finally:

 print("Exception Handling is Successful")

What if we enter a Non-Int Value: Python will Throw Value Error Exception
Example Script: MultipleExceptionHandling.py
#Multiple Exception Handling

try:

 #try to enter non int value

 x=int(input("Enter A Number : "))

 y=int(input("Enter Other Number : "))

 x/y # We try here to catch the exception

except ZeroDivisionError:

 print("Ops! You Are Trying an Illegal Division")

except ValueError:

 print("Ops! Invalid Value. Only Integers are expected")

except Exception as err:

 print("Python Says >>> {}".format(err))

else:

 print("{} divided by {} is : {} ".format(x,y,x/y))

finally:

 print("Exception Handling is Successful")

We can Also Write Multiple Exception in Single Block:
Example Script: MultiExpt.py
#Multiple Exception Handling in Single Block

try:

 #try to enter non int value

 x=int(input("Enter A Number : "))

 y=int(input("Enter Other Number : "))

 x/y # We try here to catch the exception

#Multiple Exception in One Block

except (ZeroDivisionError, ValueError):

 print("Operation Failed Due to Invalid Entry")

#for all other exceptions

except Exception as err:

 print("Python Says >>> {}".format(err))

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 56 of 61

else:

 print("{} divided by {} is : {} ".format(x,y,x/y))

finally:

 print("Exception Handling is Successful")

Raising Exceptions
We can explicitly raise exception using raise keyword:
Example Script: raiseException.py
#raising Exception explicitly

while True:

 try:

 #try to enter a negative Number or a non int value

 a = int(input("Enter a Positive Integer Number: "))

 if a < 0:

 #raising exception with custom error message

 raise ValueError("We Expect a Positive Integer Number Only!")

 except ValueError as err:

 print("Python Error >>> {}".format(err))

 except KeyboardInterrupt:

 #try to close program using ctrl+C in terminal

 print("Unexpected End of Program")

 else:

 print("{} is Positive Number".format(a))

 break

 #finally: #finally is an optional block

Nested Try and Except with File handling
Example: tryExceptWithFileHandling.py
#Try-Except block with file-Handling

myFile="hello.txt"

try:

 #creating a file handler

 fp=open(myFile,'r',encoding='utf-8')

except Exception as err:

 print("Something went wrong... Python Says >>> {}".format(err))

else:

 print(fp.read())

finally:

 #always close file in finally block

 fp.close()

Now Try This:
#Try-Except block with file-Handling

myFile="hello.txt"

try:

 #creating a file handler

 fp=open(myFile,'r',encoding='utf-8')

except Exception as err:

 print("Something went wrong... Python Says >>> {}".format(err

else:

 print(fp.read())

finally:

 #always close file in finally block

 try:

 fp.close()

 except NameError:

 pass

User Defined Custom Exception Handling
Example Script: CustomExceptionHandling.py
#Creating a custom user-Defined Exception

class myExcept(Exception):

 "Base Class"

 pass

class NegatieValueError(myExcept):

 pass

class PositiveValueError(myExcept):

 pass

while True:

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 57 of 61

 try:

 a = int(input("Enter a number: "))

 if a < 0:

 raise NegatieValueError

 if a > 0:

 raise PositiveValueError

 except NegatieValueError:

 print("You Have Entered a Negative Value")

 except PositiveValueError:

 print("You Have Entered a Positive Value")

 except ValueError:

 print("Program Expect only integer Inputs")

 else:

 print("Congratulations You Have Entered Correct Value")

 break

print("We ar Out of While")

Built-in Exceptions

Exception Cause of Error

AssertionError Raised when assert statement fails.

AttributeError Raised when attribute assignment or reference fails.

EOFError Raised when the input() functions hits end-of-file condition.

FloatingPointError Raised when a floating point operation fails.

GeneratorExit Raise when a generator's close() method is called.

ImportError Raised when the imported module is not found.

IndexError Raised when index of a sequence is out of range.

KeyError Raised when a key is not found in a dictionary.

KeyboardInterrupt Raised when the user hits interrupt key (Ctrl+c or delete).

MemoryError Raised when an operation runs out of memory.

NameError Raised when a variable is not found in local or global scope.

NotImplementedError Raised by abstract methods.

OSError Raised when system operation causes system related error.

OverflowError Raised when result of an arithmetic operation is too large to be represented.

ReferenceError Raised when a weak reference proxy is used to access a garbage collected referent.

RuntimeError Raised when an error does not fall under any other category.

StopIteration
Raised by next() function to indicate that there is no further item to be returned by
iterator.

SyntaxError Raised by parser when syntax error is encountered.

IndentationError Raised when there is incorrect indentation.

TabError Raised when indentation consists of inconsistent tabs and spaces.

SystemError Raised when interpreter detects internal error.

SystemExit Raised by sys.exit() function.

TypeError Raised when a function or operation is applied to an object of incorrect type.

UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no
value has been bound to that variable.

UnicodeError Raised when a Unicode-related encoding or decoding error occurs.

UnicodeEncodeError Raised when a Unicode-related error occurs during encoding.

UnicodeDecodeError Raised when a Unicode-related error occurs during decoding.

UnicodeTranslateError Raised when a Unicode-related error occurs during translating.

ValueError Raised when a function gets argument of correct type but improper value.

ZeroDivisionError Raised when second operand of division or modulo operation is zero.

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 58 of 61

Regular Expression

RegEx:
Starting from UNIX, most of the programming language support regular expressions. Basic rules of regular Expression are same. A

regular expression, regex or regexp (sometimes called a rational expression) is a sequence of characters that define a search pattern.

Usually this pattern is used by string searching algorithms for "find" or "find and replace" operations on strings, or for input

validation. It is a technique developed in theoretical computer science and formal language theory.

The concept arose in the 1950s when the American mathematician Stephen Cole Kleene formalized the description of a regular

language. The concept came into common use with Unix text-processing utilities. Since the 1980s, different syntaxes for writing

regular expressions exist, one being the POSIX standard and another, widely used, being the Perl syntax.

Regular Expressions uses meta-characters to design search pattern. They have special meanings.

Common Meta-Characters being used in RegExp

Meta-Character Description Example

[] A set of characters "[a-m]"

\ Signals a special sequence "\d"

. Any character (except newline character) "he..o"

^ Starts with "^hello"

$ Ends with "world$"

* Zero or more occurrences "aix*"

+ One or more occurrences "aix+"

{} Exactly the specified number of occurrences "al{2}"

| Either or , Alternation, OR Logic "falls|stays"

Special
Sequences

Description Example

\A Returns a match if the specified characters are at the beginning of the string "\AThe"

\b Returns a match where the specified characters are at the beginning or at the end of a word
r"\bain"
r"ain\b"

\B
Returns a match where the specified characters are present, but NOT at the beginning (or at the end) of
a word

r"\Bain"
r"ain\B"

\d Returns a match where the string contains digits (numbers from 0-9) "\d"

\D Returns a match where the string DOES NOT contain digits "\D"

\s Returns a match where the string contains a white space character "\s"

\S Returns a match where the string DOES NOT contain a white space character "\S"

\w
Returns a match where the string contains any word characters (characters from a to Z, digits from 0-9,
and the underscore _ character)

"\w"

\W Returns a match where the string DOES NOT contain any word characters "\W"

\Z Returns a match if the specified characters are at the end of the string "Spain\Z"

Set Description

[arn] Returns a match where one of the specified characters (a, r, or n) are present

[a-n] Returns a match for any lower case character, alphabetically between a and n

[^arn] Returns a match for any character EXCEPT a, r, and n

[0123] Returns a match where any of the specified digits (0, 1, 2, or 3) are present

[0-9] Returns a match for any digit between 0 and 9

[0-5][0-9] Returns a match for any two-digit numbers from 00 and 59

[a-zA-Z] Returns a match for any character alphabetically between a and z, lower case OR upper case

[+] In sets, +, *, ., |, (), $,{} has no special meaning, so [+] means: return a match for any + character in the string

Quantifiers Description

+ Matches the preceding pattern element one or more times.

? Matches the preceding pattern element zero or one time.

? Modifies the *, +, ? or {M,N}'d regex that comes before to match as few times as possible.

* Matches the preceding pattern element zero or more times.

{M,N} Denotes the minimum M and the maximum N match count.
N can be omitted and M can be 0: {M} matches "exactly" M times; {M,} matches "at least" M times; {0,N}
matches "at most" N times.
x* y+ z? is thus equivalent to x{0,} y{1,} z{0,1}.

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 59 of 61

import re

Python have module re to work with regular expressions.

Designing a regular expression pattern: ^P..L..X$

This pattern matches all the 7 character combinations which Start with 'P' followed by any two characters, then' L' followed by any

two characters and then 'X'.

Let's Try our First Program with re.match(pattern, string):
#Testing a match using match(pattern, string) method

import re

inputString="PRELTEX"

searchString='^P..L..X$'

if re.match(searchString,inputString):

 print("Match Found")

else:

 print("Match Fail")

Searching in a List:
import re

inputList=['PRELTEX','PRRLTTX','PTTTTTX']

searchString='^P..L..X$'

for inputString in inputList:

 if re.match(searchString,inputString):

 print("Match-Pass")

 else:

 print("Match-Fail")

Matching Valid Mobile No
#matching valid mobile No using match(pattern, string) method

import re

inputList=['+919896010011','0919896010011','91-9896010011','+9198960-10011','+91-98960-

10011']

searchString='\+?0?91-?[7-9][0-9]{4}-?[0-9]{5}'

for inputString in inputList:

 if re.match(searchString,inputString):

 print("{} Match-Pass".format(inputString))

 else:

 print("{} Match-Fail".format(inputString))

re.findall(pattern,string)

Matching all instances of pattern in a String and returns list of matches:
#Extracting all instances of a pattern from a string; in form of list

import re

inputString = 'one 1 two 2 three 3 four thousand 4000'

#search decimal digits

sarchPattern = '\d+' #try this>>> sarchPattern = '\d'

#or

#sarchPattern = '[0-9]+'

matches = re.findall(sarchPattern, inputString)

print(matches)

re.split(pattern,string)

Splits the string where there is a match and returns a list of strings where the splits have occurred.
import re

inputString = 'one 1 two 2 three 3 four thousand 4000'

#search decimal digits

sarchPattern = '\d+' #try this>>> sarchPattern = '\d'

#or

#sarchPattern = '[0-9]+'

matches = re.split(sarchPattern, inputString)

print(matches)

re.split(pattern,string,maximum_no_of_splits)

Splits the string where there is a match and returns a list of strings where the splits have occurred.
import re

inputString = 'one 1 two 2 three 3 four thousand 4000'

#search decimal digits

sarchPattern = '\d+' #try this>>> sarchPattern = '\d'

#or

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 60 of 61

#sarchPattern = '[0-9]+'

matches = re.split(sarchPattern, inputString,2)

print(matches)

re.sub(pattern, replace_with_sbstitute, string)

Substitute/Replace the pattern matches with some string
import re

inputString = 'one 1 two 2 three 3 four thousand 4000'

#search decimal digits

sarchPattern = '\d+'

substituteString='Number'

matches = re.sub(sarchPattern,substituteString, inputString)

print(matches)

Controlling the Substitute

re.sub(pattern, replace_with_sbstitute, string, maximum_match_and_Replace)
import re

inputString = 'one 1 two 2 three 3 four thousand 4000'

#search decimal digits

sarchPattern = '\d+'

substituteString='Number'

matches = re.sub(sarchPattern,substituteString, inputString,2)

print(matches)

re.subn(pattern, replace_with_sbstitute, string, maximum_match_and_Replace)

In addition to the results of re.sub() it also returns number of substitution made
import re

inputString = 'one 1 two 2 three 3 four thousand 4000'

#search decimal digits

sarchPattern = '\d+'

substituteString='X'

matches = re.subn(sarchPattern,substituteString, inputString)

#matches = re.subn(sarchPattern,substituteString, inputString,2)

print(matches)

re.search(pattern, str)
import re

inputString = 'one two three four four'

sarchPattern = 'four' #search first instance of 'four'

#sarchPattern = '^four' #search 'four' at the begnining of the line

#sarchPattern = '\Afour

#sarchPattern = 'four$' #search 'four' at the end of the line

#sarchPattern = 'four\Z'

match = re.search(sarchPattern,inputString)

print(match)

match.group()

returns the matched pattern as group

match.start(), match.end() and match.span()

returns the index of the match, starting position, end position, (start, end)

match.re, match.string

returns the regular expression and input string
import re

inputString = 'once there was a crow'

#starting with c and followed by one or more char and end by e

searchPattern = 'c.+e'

match = re.search(searchPattern, inputString)

#now printing the match object only

if match:

 print(match)

 print(match.group())

 print(match.start())

 print(match.end())

 print(match.span())

 print(match.re)

 print(match.string)

 print(re.compile(searchPattern))

else:

 print("No Match")

© Preltex Solutions Pvt Ltd | Fundamentals of Python Programming Page 61 of 61

Modules

import myScript

How to Access:

myScript.fun1()

from myScript import fun1,fun2, fun3

from myScript import myClass,fun1,fun2, fun3

from myScript import *

How to Access:

fun1()

When two modules have identical names of their methods/calss

form myScript1 import fun1,fun2

form myScript2 import fun1,fun2

How to Access:

form myScript1 import fun1,fun2

fun1()

fun2()

form myScript2 import fun1,fun2

fun1()

fun2()

OR

import myScript1

import myScript2

myScript1.fun1()

myScript2.fun1()

